QUANTUM LOOP ALGEBRAS AND ℓ-ROOT OPERATORS

被引:0
|
作者
CHARLES YOUNG
机构
[1] University of Hertfordshire,School of Physics, Astronomy and Mathematics
来源
Transformation Groups | 2015年 / 20卷
关键词
Quantum Group; Formal Series; Dynkin Diagram; Cluster Algebra; Tensor Category;
D O I
暂无
中图分类号
学科分类号
摘要
Let g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} be a simple Lie algebra over ℂ and q ∈ ℂ× transcendental. We consider the category CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{C}}_{\mathcal{P}} $$\end{document} of finite-dimensional representations of the quantum loop algebra Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} in which the poles of all ℓ-weights belong to specified finite sets P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}. Given the data (g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document}; q;P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}), we define an algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} whose raising/lowering operators are constructed to act with definite ℓ-weight (unlike those of Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} itself). It is shown that there is a homomorphism Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} → A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} such that every representation V in CP is the pull-back of a representation of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}.
引用
收藏
页码:1195 / 1226
页数:31
相关论文
共 50 条
  • [31] Coherent state operators in loop quantum gravity
    Alesci, Emanuele
    Dapor, Andrea
    Lewandowski, Jerzy
    Maekinen, Ilkka
    Sikorski, Jan
    PHYSICAL REVIEW D, 2015, 92 (10)
  • [32] Master constraint operators in loop quantum gravity
    Han, MX
    Ma, YG
    PHYSICS LETTERS B, 2006, 635 (04) : 225 - 231
  • [33] Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators
    Chemla, S
    JOURNAL OF ALGEBRA, 2004, 276 (01) : 80 - 102
  • [34] Q-FERMIONIC OPERATORS AND QUANTUM EXCEPTIONAL ALGEBRAS
    FRAPPAT, L
    SORBA, P
    SCIARRINO, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (04): : L179 - L183
  • [35] Wave Operators on Quantum Algebras via Noncanonical Quantization
    Dimitri Gurevich
    Pavel Saponov
    Acta Applicandae Mathematicae, 2010, 109 : 19 - 38
  • [36] Wave Operators on Quantum Algebras via Noncanonical Quantization
    Gurevich, Dimitri
    Saponov, Pavel
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (01) : 19 - 38
  • [37] Higher Sugawara Operators for the Quantum Affine Algebras of Type A
    Frappat, Luc
    Jing, Naihuan
    Molev, Alexander
    Ragoucy, Eric
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 631 - 657
  • [38] Higher Sugawara Operators for the Quantum Affine Algebras of Type A
    Luc Frappat
    Naihuan Jing
    Alexander Molev
    Eric Ragoucy
    Communications in Mathematical Physics, 2016, 345 : 631 - 657
  • [39] Operators of quantum-reduced loop gravity from the perspective of full loop quantum gravity
    Makinen, Ilkka
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [40] MEROMORPHIC TENSOR EQUIVALENCE FOR YANGIANS AND QUANTUM LOOP ALGEBRAS
    Gautam, Sachin
    Toledano Laredo, Valerio
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 125 (01): : 267 - 337