QUANTUM LOOP ALGEBRAS AND ℓ-ROOT OPERATORS

被引:0
|
作者
CHARLES YOUNG
机构
[1] University of Hertfordshire,School of Physics, Astronomy and Mathematics
来源
Transformation Groups | 2015年 / 20卷
关键词
Quantum Group; Formal Series; Dynkin Diagram; Cluster Algebra; Tensor Category;
D O I
暂无
中图分类号
学科分类号
摘要
Let g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} be a simple Lie algebra over ℂ and q ∈ ℂ× transcendental. We consider the category CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{C}}_{\mathcal{P}} $$\end{document} of finite-dimensional representations of the quantum loop algebra Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} in which the poles of all ℓ-weights belong to specified finite sets P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}. Given the data (g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document}; q;P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P} $$\end{document}), we define an algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} whose raising/lowering operators are constructed to act with definite ℓ-weight (unlike those of Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} itself). It is shown that there is a homomorphism Uqℒg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\mathrm{\mathcal{L}}\mathfrak{g}\right) $$\end{document} → A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} such that every representation V in CP is the pull-back of a representation of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}.
引用
收藏
页码:1195 / 1226
页数:31
相关论文
共 50 条
  • [1] QUANTUM LOOP ALGEBRAS AND l-ROOT OPERATORS
    Young, Charles
    TRANSFORMATION GROUPS, 2015, 20 (04) : 1195 - 1226
  • [2] Tensor operators for quantum algebras
    Tolstoy, VN
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1453 - 1458
  • [3] Yangians and quantum loop algebras
    Sachin Gautam
    Valerio Toledano Laredo
    Selecta Mathematica, 2013, 19 : 271 - 336
  • [4] Yangians and quantum loop algebras
    Gautam, Sachin
    Laredo, Valerio Toledano
    SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02): : 271 - 336
  • [5] Projection operators for Lie algebras, superalgebras, and quantum algebras
    Smirnov, YF
    LATIN-AMERICAN SCHOOL OF PHYSICS XXX ELAF: GROUP THEORY AND ITS APPLICATIONS, 1996, (365): : 99 - 116
  • [6] Commuting matrix differential operators and loop algebras
    Kimura, M
    Vanhaecke, P
    BULLETIN DES SCIENCES MATHEMATIQUES, 2001, 125 (05): : 407 - 428
  • [7] On quantum Lie algebras and quantum root systems
    Delius, GW
    Huffmann, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1703 - 1722
  • [8] Quantum loop algebras, quiver varieties, and cluster algebras
    Leclerc, Bernard
    REPRESENTATIONS OF ALGEBRAS AND RELATED TOPICS, 2011, : 117 - 152
  • [9] Braided differential operators on quantum algebras
    Gurevich, Dimitri
    Pyatov, Pavel
    Saponov, Pavel
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1485 - 1501
  • [10] Noetherian Algebras of Quantum Differential Operators
    Iyer, Uma N.
    Jordan, David A.
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (06) : 1593 - 1622