Hypergeometric Solutions to an Ultradiscrete Painlevé Equation

被引:0
|
作者
Christopher M. Ormerod
机构
[1] La Trobe University,Department of Mathematics and Statistics
关键词
Painlevé; discrete; ultradiscrete; hypergeometric; piece-wise linear; integrable; tropical;
D O I
暂无
中图分类号
学科分类号
摘要
We show that an ultradiscrete analogue of the third Painlevé equation admits discrete Riccati type solutions. We derive these solutions by considering a framework in which the ultradiscretization process arises as a restriction of a non-archimedean valuation over a field. Using this framework we may relax the conditions one requires to apply the ultradiscretization process. We derive a family of transcendental solutions that appear as the non-archimedean field valuation of hypergeometric functions.
引用
收藏
页码:87 / 102
页数:15
相关论文
共 50 条
  • [11] ON THE KUMMER SOLUTIONS OF THE HYPERGEOMETRIC EQUATION
    PROSSER, RT
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (06): : 535 - 543
  • [12] Conserved quantities and generalized solutions of the ultradiscrete KdV equation
    Kanki, Masataka
    Mada, Jun
    Tokihiro, Tetsuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
  • [13] Tronquée Solutions of the Painlevé Equation PI
    O. Costin
    R. D. Costin
    M. Huang
    Constructive Approximation, 2015, 41 : 467 - 494
  • [14] Local expansions of solutions to the fifth Painlevé equation
    A. D. Bruno
    A. V. Parusnikova
    Doklady Mathematics, 2011, 83 : 348 - 352
  • [15] Asymptotic forms of solutions to the fourth Painlevé equation
    A. D. Bruno
    I. V. Goryuchkina
    Doklady Mathematics, 2008, 78 : 868 - 873
  • [16] Asymptotic forms of solutions to the third Painlevé equation
    A. D. Bruno
    I. V. Goryuchkina
    Doklady Mathematics, 2008, 78 : 765 - 768
  • [17] Asymptotics of Solutions of the Discrete Painlevé I Equation
    Aptekarev, A. I.
    Novokshenov, V. Yu.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 1170 - 1182
  • [18] Tronqu,e solutions of the painlev, II equation
    Novokshenov, V. Yu
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1136 - 1146
  • [19] Asymptotic forms of solutions to the fourth Painlev, equation
    Bruno, A. D.
    Goryuchkina, I. V.
    DOKLADY MATHEMATICS, 2008, 78 (03) : 868 - 873
  • [20] Solutions of a modified third Painlevé equation are meromorphic
    Aimo Hinkkanen
    Ilpo Laine
    Journal d’Analyse Mathématique, 2001, 85 : 323 - 337