Conserved quantities and generalized solutions of the ultradiscrete KdV equation

被引:9
|
作者
Kanki, Masataka [1 ]
Mada, Jun [2 ]
Tokihiro, Tetsuji [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Nihon Univ, Coll Ind Technol, Chiba 2758576, Japan
关键词
BOX-BALL SYSTEMS; SOLITON CELLULAR-AUTOMATON;
D O I
10.1088/1751-8113/44/14/145202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct generalized solutions to the ultradiscrete KdV equation, including the so-called negative solition solutions. The method is based on the ultradiscretization of soliton solutions to the discrete KdV equation with gauge transformation. The conserved quantities of the ultradiscrete KdV equation are shown to be constructed in a similar way to those for the box-ball system.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Generalized Periodic Ultradiscrete KdV Equation and Its Background Solutions
    Kanki, Masataka
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2011, 18 (03): : 269 - 298
  • [2] CONSERVED QUANTITIES FOR GENERALIZED KDV EQUATIONS
    CALOGERO, F
    DEGASPERIS, A
    LETTERE AL NUOVO CIMENTO, 1980, 28 (01): : 12 - 14
  • [3] Ultradiscrete KdV equation
    Tsujimoto, S
    Hirota, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) : 1809 - 1810
  • [4] Solutions to the ultradiscrete KdV equation expressed as the maximum of a quadratic function
    Nakata, Yoichi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (26)
  • [5] Solving the ultradiscrete KdV equation
    Willox, Ralph
    Nakata, Yoichi
    Satsuma, Junkichi
    Ramani, Alfred
    Grammaticos, Basile
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (48)
  • [6] Vertex operator for the ultradiscrete KdV equation
    Nakata, Yoichi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)
  • [7] Darboux dressing and undressing for the ultradiscrete KdV equation
    Nimmo, Jonathan J. C.
    Gilson, Claire R.
    Willox, Ralph
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (44)
  • [8] Discrete and ultradiscrete Backlund transformation for KdV equation
    Isojima, S.
    Kubo, S.
    Murata, M.
    Satsuma, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
  • [9] PERIODIC SOLUTIONS OF THE GENERALIZED KDV EQUATION
    Sun, Yingnan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2103 - 2110
  • [10] On the support of solutions to the generalized KdV equation
    Kenig, CE
    Ponce, G
    Vega, L
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (02): : 191 - 208