Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus

被引:0
|
作者
S. I. Maksymenko
B. G. Feshchenko
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2015年 / 66卷
关键词
Smooth Function; Exact Sequence; Homotopic Type; Morse Function; Ukrainian National Academy;
D O I
暂无
中图分类号
学科分类号
摘要
Let f : T2 → ℝ be a Morse function on a 2-torus, let S(f) and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(f) be, respectively, its stabilizer and orbit with respect to the right action of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2) of diffeomorphisms of T2, let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2), be the identity path component of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2), and let S′(f) = S(f) ∩ D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2). We present sufficient conditions under which π1Of=π1DidT2×π0S′f≡ℤ2×π0S′f.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\uppi}_1\mathcal{O}(f)={\uppi}_1{\mathcal{D}}_{\mathrm{id}}\left({T}^2\right)\times {\uppi}_0S^{\prime }(f)\equiv {\mathrm{\mathbb{Z}}}^2\times {\uppi}_0S^{\prime }(f). $$\end{document} The obtained result is true for a larger class of functions whose critical points are equivalent to homogeneous polynomials without multiple factors.
引用
收藏
页码:1346 / 1353
页数:7
相关论文
共 50 条
  • [31] The stable norm on the 2-torus at irrational directions
    Klempnauer, Stefan
    Schroder, Jan Philipp
    NONLINEARITY, 2017, 30 (03) : 912 - 942
  • [32] Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus
    Grines, V. Z.
    Mints, D. I.
    Chilina, E. E.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 187 - 198
  • [33] Rotational chaos and strange attractors on the 2-torus
    Jan P. Boroński
    Piotr Oprocha
    Mathematische Zeitschrift, 2015, 279 : 689 - 702
  • [34] Rotational chaos and strange attractors on the 2-torus
    Boronski, Jan P.
    Oprocha, Piotr
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 689 - 702
  • [35] GLOBAL SMOOTH SOLUTIONS WITH LARGE DATA FOR A SYSTEM MODELING AURORA TYPE PHENOMENA IN THE 2-TORUS
    Frid, Hermano
    Marroquin, Daniel
    Nariyoshi, Joao F. C.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 1122 - 1167
  • [36] Topological conjugacy of linear endomorphisms of the 2-torus
    Adler, R
    Tresser, C
    Worfolk, PA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (04) : 1633 - 1652
  • [37] CONFORMAL IRREGULARITY FOR DENJOY DIFFEOMORPHISMS OF THE 2-TORUS
    NORTON, A
    VELLING, JA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (02) : 655 - 671
  • [38] 2-TORUS MANIFOLDS, COBORDISM AND SMALL COVERS
    Lue, Zhi
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (02) : 285 - 308
  • [39] AFFINE STRUCTURES ON REAL 2-TORUS I
    NAGANO, T
    YAGI, K
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (06) : 1251 - 1253
  • [40] RATIONAL MODE LOCKING FOR HOMEOMORPHISMS OF THE 2-TORUS
    Addas-Zanata, Salvador
    Le Calvez, Patrice
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1551 - 1570