Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus

被引:0
|
作者
S. I. Maksymenko
B. G. Feshchenko
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2015年 / 66卷
关键词
Smooth Function; Exact Sequence; Homotopic Type; Morse Function; Ukrainian National Academy;
D O I
暂无
中图分类号
学科分类号
摘要
Let f : T2 → ℝ be a Morse function on a 2-torus, let S(f) and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(f) be, respectively, its stabilizer and orbit with respect to the right action of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2) of diffeomorphisms of T2, let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2), be the identity path component of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2), and let S′(f) = S(f) ∩ D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2). We present sufficient conditions under which π1Of=π1DidT2×π0S′f≡ℤ2×π0S′f.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\uppi}_1\mathcal{O}(f)={\uppi}_1{\mathcal{D}}_{\mathrm{id}}\left({T}^2\right)\times {\uppi}_0S^{\prime }(f)\equiv {\mathrm{\mathbb{Z}}}^2\times {\uppi}_0S^{\prime }(f). $$\end{document} The obtained result is true for a larger class of functions whose critical points are equivalent to homogeneous polynomials without multiple factors.
引用
收藏
页码:1346 / 1353
页数:7
相关论文
共 50 条
  • [21] Killing tensor fields on the 2-torus
    Sharafutdinov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (01) : 155 - 173
  • [22] On Equivariantly Formal 2-Torus Manifolds
    Yu, Li
    TRANSFORMATION GROUPS, 2023,
  • [23] ON THE NUMBER OF CLOSED GEODESICS ON THE 2-TORUS
    RADEMACHER, HB
    ARCHIV DER MATHEMATIK, 1991, 56 (04) : 386 - 393
  • [24] FACE ENUMERATION FOR LINE ARRANGEMENTS IN A 2-TORUS
    Chandrasekhar, Karthik
    Deshpande, Priyavrat
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (03): : 345 - 362
  • [25] Hilbert series of symplectic quotients by the 2-torus
    Herbig, Hans-Christian
    Herden, Daniel
    Seaton, Christopher
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 415 - 442
  • [26] A MINIMAL POSITIVE ENTROPY HOMEOMORPHISM OF THE 2-TORUS
    REES, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1981, 23 (JUN): : 537 - 550
  • [27] Hilbert series of symplectic quotients by the 2-torus
    Hans-Christian Herbig
    Daniel Herden
    Christopher Seaton
    Collectanea Mathematica, 2023, 74 : 415 - 442
  • [28] Global minimizers for Tonelli Lagrangians on the 2-torus
    Schroeder, Jan Philipp
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (02) : 261 - 291
  • [29] Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus
    V. Z. Grines
    D. I. Mints
    E. E. Chilina
    Mathematical Notes, 2023, 114 : 187 - 198
  • [30] NONDENSE ORBITS FOR ANOSOV DIFFEOMORPHISMS OF THE 2-TORUS
    Tseng, Jimmy
    REAL ANALYSIS EXCHANGE, 2016, 41 (02) : 307 - 314