Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus

被引:0
|
作者
S. I. Maksymenko
B. G. Feshchenko
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
关键词
Smooth Function; Exact Sequence; Homotopic Type; Morse Function; Ukrainian National Academy;
D O I
暂无
中图分类号
学科分类号
摘要
Let f : T2 → ℝ be a Morse function on a 2-torus, let S(f) and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(f) be, respectively, its stabilizer and orbit with respect to the right action of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2) of diffeomorphisms of T2, let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2), be the identity path component of the group D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}(T2), and let S′(f) = S(f) ∩ D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}id(T2). We present sufficient conditions under which π1Of=π1DidT2×π0S′f≡ℤ2×π0S′f.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\uppi}_1\mathcal{O}(f)={\uppi}_1{\mathcal{D}}_{\mathrm{id}}\left({T}^2\right)\times {\uppi}_0S^{\prime }(f)\equiv {\mathrm{\mathbb{Z}}}^2\times {\uppi}_0S^{\prime }(f). $$\end{document} The obtained result is true for a larger class of functions whose critical points are equivalent to homogeneous polynomials without multiple factors.
引用
收藏
页码:1346 / 1353
页数:7
相关论文
共 50 条
  • [1] Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus
    Maksymenko, S. I.
    Feshchenko, B. G.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (09) : 1346 - 1353
  • [2] Multivalued Lyapunov functions for homeomorphisms of the 2-torus
    Le Calvez, Patrice
    FUNDAMENTA MATHEMATICAE, 2006, 189 (03) : 227 - 253
  • [3] SMOOTH FUNCTIONS ON 2-TORUS WHOSE KRONROD-REEB GRAPH CONTAINS A CYCLE
    Maksymenko, Seroty
    Feshchenko, Fohdan
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2015, 21 (01): : 22 - 40
  • [4] FAST DYNAMO PROBLEM FOR A SMOOTH MAP ON A 2-TORUS
    OSELEDETS, V
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1993, 73 (1-4): : 133 - 145
  • [5] Dynamical properties of 2-torus parabolic maps
    Fu, Xin-Chu
    Chen, Fang-Yue
    Zhao, Xiao-Hua
    NONLINEAR DYNAMICS, 2007, 50 (03) : 539 - 549
  • [6] Dynamical properties of 2-torus parabolic maps
    Xin-Chu Fu
    Fang-Yue Chen
    Xiao-Hua Zhao
    Nonlinear Dynamics, 2007, 50 : 539 - 549
  • [7] Is the deformation space of complete affine structures on the 2-torus smooth?
    Baues, O
    Goldman, WM
    Geometry and Dynamics, 2005, 389 : 69 - 89
  • [8] RENORMALIZATION OF MAPPINGS OF THE 2-TORUS
    KIM, SH
    OSTLUND, S
    PHYSICAL REVIEW LETTERS, 1985, 55 (11) : 1165 - 1168
  • [9] Graphs of 2-torus actions
    Lue, Zhi
    TORIC TOPOLOGY, 2008, 460 : 261 - 272
  • [10] SETS OF UNIQUENESS ON 2-TORUS
    SHAPIRO, VL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) : 127 - &