Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system

被引:0
|
作者
Muhammad Aqeel
Salman Ahmad
机构
[1] Institute of Space Technology,Department of Applied Mathematics and Statistics
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Chaotic system; Local stability; Hopf bifurcation; Numerical continuation technique; Poincaré map;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, Hopf bifurcation is characterized for newly proposed Bhalekar–Gejji three-dimensional chaotic dynamical system. By analytical method, a sufficient condition is established for the existence of Hopf bifurcation. Using numerical continuation technique, Hopf bifurcation diagram is analyzed for chaotic parameter which strengthens our analytical results. Moreover, influence of system parameters on dynamical behavior is investigated using phase portraits, Lyapunov exponents, Lyapunov dimensions and Poincaré maps. Theoretical analysis and numerical simulations demonstrate the rich dynamics of the system.
引用
收藏
页码:755 / 765
页数:10
相关论文
共 50 条
  • [41] Stochastic Hopf Bifurcation of a novel finance chaotic system
    Zhang, Jiangang
    Nan, Juan
    Chu, Yandong
    Du, Wenju
    An, Xinlei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2727 - 2739
  • [42] Anti-control of Hopf bifurcation for a chaotic system
    Zhang, Liang
    Han, Qin
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2024, 13 (01):
  • [43] THE FLOW STRUCTURE IN A THREE-DIMENSIONAL MODEL OF ABDOMINAL AORTIC BIFURCATION: ULTRASONIC AND NUMERICAL STUDY
    Sinitsyna, D. E.
    Yukhnev, A. D.
    Zaitsev, D. K.
    Turkina, M. V.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2019, 12 (04): : 50 - 60
  • [44] Bifurcation and uniqueness of periodic solution for a three-dimensional system
    Yang, QG
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 862 - 866
  • [45] Analytical and Numerical Solutions for Three-Dimensional Granular Collapses
    Wyser, Emmanuel
    Alkhimenkov, Yury
    Jaboyedoff, Michel
    Podladchikov, Yury Y.
    GEOSCIENCES, 2023, 13 (04)
  • [46] NEW DEVELOPMENT OF STOCHASTIC HOPF BIFURCATION ANALYSIS IN A NOVEL TWO-DIMENSIONAL CHAOTIC SYSTEM
    Luo, Ruifen
    Zhang, Jiangang
    Du, Wenju
    Chang, Yingxiang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (05): : 1703 - 1713
  • [47] Hopf bifurcation and transition of three-dimensional wind-driven ocean circulation problem
    Lu, ChunHsien
    Mao, Yiqiu
    Wang, Quan
    Yan, Dongming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (04) : 2560 - 2593
  • [48] Chaotic dynamics of three-dimensional Henon maps that originate from a homoclinic bifurcation
    Gonchenko, S. V.
    Meiss, J. D.
    Ovsyannikov, I. I.
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (02): : 191 - 212
  • [49] Anti-control of Hopf bifurcation for high-dimensional chaotic system with coexisting attractors
    Erxi Zhu
    Min Xu
    Dechang Pi
    Nonlinear Dynamics, 2022, 110 : 1867 - 1877
  • [50] Stability and Hopf bifurcation analysis of a new four-dimensional hyper-chaotic system
    Zhou, Liangqiang
    Zhao, Ziman
    Chen, Fangqi
    MODERN PHYSICS LETTERS B, 2020, 34 (29):