Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system

被引:0
|
作者
Muhammad Aqeel
Salman Ahmad
机构
[1] Institute of Space Technology,Department of Applied Mathematics and Statistics
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Chaotic system; Local stability; Hopf bifurcation; Numerical continuation technique; Poincaré map;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, Hopf bifurcation is characterized for newly proposed Bhalekar–Gejji three-dimensional chaotic dynamical system. By analytical method, a sufficient condition is established for the existence of Hopf bifurcation. Using numerical continuation technique, Hopf bifurcation diagram is analyzed for chaotic parameter which strengthens our analytical results. Moreover, influence of system parameters on dynamical behavior is investigated using phase portraits, Lyapunov exponents, Lyapunov dimensions and Poincaré maps. Theoretical analysis and numerical simulations demonstrate the rich dynamics of the system.
引用
收藏
页码:755 / 765
页数:10
相关论文
共 50 条
  • [21] BIFURCATION SCENARIO OF A THREE-DIMENSIONAL VAN DER POL OSCILLATOR
    Suenner, T.
    Sauermann, H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02): : 399 - 404
  • [22] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [23] Hopf bifurcation analysis and control of three-dimensional Prescott neuron model
    Yuan, Chunhua
    Wang, Jiang
    JOURNAL OF VIBROENGINEERING, 2016, 18 (06) : 4105 - 4115
  • [24] A new three-dimensional chaotic system
    Zhang Jian-Xiong
    Tang Wan-Sheng
    Xu Yong
    ACTA PHYSICA SINICA, 2008, 57 (11) : 6799 - 6807
  • [25] Dynamics of a three-dimensional chaotic system
    Tong, Yao-Nan
    OPTIK, 2015, 126 (24): : 5563 - 5565
  • [26] First Hopf bifurcation of conducting fluid in three-dimensional square cavity
    Zhang J.
    Chang J.
    Cui M.
    Li Q.
    Ren H.
    Yang Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (18):
  • [27] Dynamical study of a novel three-dimensional and generalized chaotic system
    Saifullah, Sayed
    Doungmo Goufo, Emile Franc
    Ali, Amir
    PHYSICA SCRIPTA, 2022, 97 (07)
  • [28] Asymptotics of homoclinic bifurcation in a three-dimensional system
    Belhaq, M
    Houssni, M
    Freire, E
    Rodríguez-Luis, AJ
    NONLINEAR DYNAMICS, 2000, 21 (02) : 135 - 155
  • [29] Asymptotics of Homoclinic Bifurcation in a Three-Dimensional System
    M. Belhaq
    M. Houssni
    E. Freire
    A. J. Rodríguez-Luis
    Nonlinear Dynamics, 2000, 21 : 135 - 155
  • [30] Bifurcation of periodic orbits of a three-dimensional system
    Liu, XL
    Han, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (02) : 253 - 274