Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system

被引:0
|
作者
Muhammad Aqeel
Salman Ahmad
机构
[1] Institute of Space Technology,Department of Applied Mathematics and Statistics
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Chaotic system; Local stability; Hopf bifurcation; Numerical continuation technique; Poincaré map;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, Hopf bifurcation is characterized for newly proposed Bhalekar–Gejji three-dimensional chaotic dynamical system. By analytical method, a sufficient condition is established for the existence of Hopf bifurcation. Using numerical continuation technique, Hopf bifurcation diagram is analyzed for chaotic parameter which strengthens our analytical results. Moreover, influence of system parameters on dynamical behavior is investigated using phase portraits, Lyapunov exponents, Lyapunov dimensions and Poincaré maps. Theoretical analysis and numerical simulations demonstrate the rich dynamics of the system.
引用
收藏
页码:755 / 765
页数:10
相关论文
共 50 条
  • [1] Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system
    Aqeel, Muhammad
    Ahmad, Salman
    NONLINEAR DYNAMICS, 2016, 84 (02) : 755 - 765
  • [2] Impulsive control and Hopf bifurcation of a three-dimensional chaotic system
    He, Xing
    Li, Chuandong
    Pan, Xiaoming
    Peng, Mei
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (09) : 1361 - 1368
  • [3] HOPF BIFURCATION IN A THREE-DIMENSIONAL SYSTEM
    李德明
    黄克累
    Applied Mathematics and Mechanics(English Edition), 1989, (11) : 1011 - 1018
  • [4] Hopf bifurcation of a three-dimensional system
    Liu, XL
    Han, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (05): : 1603 - 1614
  • [5] Hopf Bifurcation of Three-Dimensional Quadratic Jerk System
    Rasul, Tahsin I.
    Salih, Rizgar H.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (07) : 2378 - 2394
  • [6] Analytical and numerical solutions to bifurcation in three-dimensional stresses
    Sun, De'an
    Chen, Liwen
    Zhen, Wenzhan
    GEOMECHANICS AND GEOTECHNICS: FROM MICRO TO MACRO, VOLS 1 AND 2, 2011, : 53 - +
  • [7] Shilnikov chaos and Hopf bifurcation in three-dimensional differential system
    He, Qiong
    Xiong, Hai-Yun
    OPTIK, 2016, 127 (19): : 7648 - 7655
  • [8] Analysis of Degenerate Fold–Hopf Bifurcation in a Three-Dimensional Differential System
    Gheorghe Tigan
    Qualitative Theory of Dynamical Systems, 2018, 17 : 387 - 402
  • [9] Comments on "Shilnikov chaos and Hopf bifurcation in three-dimensional differential system"
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    OPTIK, 2018, 155 : 251 - 256
  • [10] Limit Cycles of the Three-dimensional Quadratic Differential System via Hopf Bifurcation
    Abddulkareem, Aram A.
    Amen, Azad I.
    Hussein, Niazy H.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (09) : 2970 - 2983