Anderson localization in the quintic nonlinear Schrödinger equation

被引:0
|
作者
Wesley B. Cardoso
Salviano A. Leão
Ardiley T. Avelar
机构
[1] Universidade Federal de Goiás,Instituto de Física
来源
关键词
Anderson localization; Nonlinear Schrödinger equation; Random potential; Quintic nonlinearity;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we consider the quintic defocusing nonlinear Schrödinger equation in presence of a disordered random potential and we analyze the effects of the quintic nonlinearity on the Anderson localization of the solution. The main result shows that Anderson localization requires a cutoff on the value of the parameter that controls the quintic nonlinearity, with the cutoff depending on the amplitude of the random potential.
引用
收藏
相关论文
共 50 条
  • [41] Standing Ring Blow up Solutions to the N-Dimensional Quintic Nonlinear Schrödinger Equation
    Pierre Raphaël
    Jérémie Szeftel
    Communications in Mathematical Physics, 2009, 290
  • [42] Anderson Localization for Schrödinger Operators on ℤ with Strongly Mixing Potentials
    Jean Bourgain
    Wilhelm Schlag
    Communications in Mathematical Physics, 2000, 215 : 143 - 175
  • [43] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [44] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [45] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [46] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [47] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [48] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559
  • [49] Perturbations of the Defocusing Nonlinear Schrödinger Equation
    B. Grébert
    T. Kappeler
    Milan Journal of Mathematics, 2003, 71 (1) : 141 - 174
  • [50] On a class of nonlinear inhomogeneous Schrödinger equation
    Chen J.
    Journal of Applied Mathematics and Computing, 2010, 32 (01) : 237 - 253