Anderson localization in the quintic nonlinear Schrödinger equation

被引:0
|
作者
Wesley B. Cardoso
Salviano A. Leão
Ardiley T. Avelar
机构
[1] Universidade Federal de Goiás,Instituto de Física
来源
关键词
Anderson localization; Nonlinear Schrödinger equation; Random potential; Quintic nonlinearity;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we consider the quintic defocusing nonlinear Schrödinger equation in presence of a disordered random potential and we analyze the effects of the quintic nonlinearity on the Anderson localization of the solution. The main result shows that Anderson localization requires a cutoff on the value of the parameter that controls the quintic nonlinearity, with the cutoff depending on the amplitude of the random potential.
引用
收藏
相关论文
共 50 条
  • [31] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [32] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [33] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [34] Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Nonlinear Dynamics, 2015, 80 : 583 - 589
  • [35] A quintic B-spline finite-element method for solving the nonlinear Schrödinger equation
    B. Saka
    Physics of Wave Phenomena, 2012, 20 : 107 - 117
  • [36] Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity
    Bao, Keyu
    Tang, Xiaogang
    Wang, Ying
    CHINESE PHYSICS B, 2024, 33 (12)
  • [37] THE INVARIANT MANIFOLDS FOR A PERTURBED QUINTIC-CUBIC SCHRDINGER EQUATION
    陈翰林
    郭柏灵
    ActaMathematicaScientia, 2004, (04) : 536 - 548
  • [38] Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schrödinger equation with variable coefficients
    Ruijuan Li
    Xuelin Yong
    Yuning Chen
    Yehui Huang
    Nonlinear Dynamics, 2020, 102 : 339 - 348
  • [39] On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics
    Ting-Ting Jia
    Yi-Tian Gao
    Yu-Jie Feng
    Lei Hu
    Jing-Jing Su
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2019, 96 : 229 - 241
  • [40] Study of Exact Solutions to Cubic-Quintic Nonlinear Schrdinger Equation in Optical Soliton Communication
    刘彬
    阮航宇
    CommunicationsinTheoreticalPhysics, 2012, 57 (05) : 731 - 736