Anderson localization in the quintic nonlinear Schrödinger equation

被引:0
|
作者
Wesley B. Cardoso
Salviano A. Leão
Ardiley T. Avelar
机构
[1] Universidade Federal de Goiás,Instituto de Física
来源
关键词
Anderson localization; Nonlinear Schrödinger equation; Random potential; Quintic nonlinearity;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we consider the quintic defocusing nonlinear Schrödinger equation in presence of a disordered random potential and we analyze the effects of the quintic nonlinearity on the Anderson localization of the solution. The main result shows that Anderson localization requires a cutoff on the value of the parameter that controls the quintic nonlinearity, with the cutoff depending on the amplitude of the random potential.
引用
收藏
相关论文
共 50 条
  • [1] Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation
    W.-M. Wang
    Zhifei Zhang
    Journal of Statistical Physics, 2009, 134 : 953 - 968
  • [2] Long-Time Anderson Localization for the Nonlinear Schrödinger Equation Revisited
    Hongzi Cong
    Yunfeng Shi
    Zhifei Zhang
    Journal of Statistical Physics, 2021, 182
  • [3] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica,English Series, 2020, 36 (02) : 153 - 170
  • [4] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica, 2020, 36 (02) : 153 - 170
  • [5] KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation
    Dong Feng Yan
    Guang Hua Shi
    Acta Mathematica Sinica, English Series, 2020, 36 : 153 - 170
  • [6] Anderson localization in the quintic nonlinear Schrodinger equation
    Cardoso, Wesley B.
    Leao, Salviano A.
    Avelar, Ardiley T.
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (08)
  • [7] Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation
    Lei Wang
    Chong Liu
    Xuan Wu
    Xin Wang
    Wen-Rong Sun
    Nonlinear Dynamics, 2018, 94 : 977 - 989
  • [8] Dynamics of cubic–quintic nonlinear Schr?dinger equation with different parameters
    花巍
    刘学深
    刘世兴
    Chinese Physics B, 2016, 25 (05) : 27 - 34
  • [9] Exact solutions for the quintic nonlinear Schrödinger equation with time and space
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Wenwu Deng
    Nonlinear Dynamics, 2016, 84 : 251 - 259
  • [10] Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrdinger equation
    Boling GUO and Hanlin CHEN Institute of Applied Physics and Computational Mathematics
    Mianyang Normal College
    CommunicationsinNonlinearScience&NumericalSimulation, 2001, (04) : 227 - 230