Three-dimensional spatiotemporal focusing of holographic patterns

被引:0
|
作者
Oscar Hernandez
Eirini Papagiakoumou
Dimitrii Tanese
Kevin Fidelin
Claire Wyart
Valentina Emiliani
机构
[1] Wavefront-Engineering Microscopy Group,
[2] Neurophotonics Laboratory,undefined
[3] CNRS UMR 8250,undefined
[4] Paris Descartes University,undefined
[5] UFR Biomédicale,undefined
[6] Institut national de la santé et de la recherche médicale (Inserm),undefined
[7] Institut du Cerveau et de la Moelle Épinière,undefined
[8] Present address: CNC Program,undefined
[9] Stanford University,undefined
[10] Stanford,undefined
[11] California 94305,undefined
[12] USA.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.
引用
收藏
相关论文
共 50 条
  • [31] HOLOGRAPHIC DISPLAY OF THREE-DIMENSIONAL IMAGES.
    Hodges, Larry F.
    Love, Shaun
    McAllister, David F.
    Information Display, 1987, 3 (09) : 8 - 11
  • [32] Gauges in three-dimensional gravity and holographic fluids
    Luca Ciambelli
    Charles Marteau
    P. Marios Petropoulos
    Romain Ruzziconi
    Journal of High Energy Physics, 2020
  • [33] Novel three-dimensional holographic visualization system
    Epikhine, EN
    Sobolev, PG
    3RD INTERNATIONAL CONFERENCE ON OPTICAL INFORMATION PROCESSING, 1999, 3900 : 138 - 141
  • [34] Holographic three-dimensional display with data processing
    Matoba, Osamu
    Hosoi, Kousuke
    Nitta, Kouichi
    Yoshimura, Takeaki
    Information Optics, 2006, 860 : 39 - 43
  • [35] Three-dimensional holographic lithography by an iterative algorithm
    Cowling, Joshua J.
    Williams, Gavin L.
    Purvis, Alan
    McWilliam, Richard
    Toriz-Garcia, Jose J.
    Seed, Nicholas L.
    Soulard, Florian B.
    Ivey, Peter A.
    OPTICS LETTERS, 2011, 36 (13) : 2495 - 2497
  • [36] Gauges in three-dimensional gravity and holographic fluids
    Ciambelli, Luca
    Marteau, Charles
    Petropoulos, P. Marios
    Ruzziconi, Romain
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [37] Three-dimensional display systems with holographic technologies
    Sakamoto, K
    Takahashi, H
    Shimizu, E
    Yamasaki, K
    Andou, T
    Okamoto, M
    SIXTH INTERNATIONAL SYMPOSIUM ON DISPLAY HOLOGRAPHY, 1998, 3358 : 232 - 238
  • [38] Three-dimensional TV using holographic stereogram
    Sato, Koki
    Koizumi, Shinya
    Chou, Koumei
    Takano, Kunihiko
    PRACTICAL HOLOGRAPHY XXI: MATERIALS AND APPLICATIONS, 2007, 6488
  • [39] Three-dimensional holographic recording by femtosecond pulses
    Juodkazis, S
    Kondo, T
    Dubikovski, S
    Mizeikis, V
    Matsuo, S
    Misawa, H
    ALT'02 INTERNATIONAL CONFERENCE ON ADVANCED LASER TECHNOLOGIES, 2003, 5147 : 226 - 235
  • [40] Digital Holographic Three-Dimensional Video Displays
    Onural, Levent
    Yaras, Fahri
    Kang, Hoonjong
    PROCEEDINGS OF THE IEEE, 2011, 99 (04) : 576 - 589