Three-dimensional spatiotemporal focusing of holographic patterns

被引:0
|
作者
Oscar Hernandez
Eirini Papagiakoumou
Dimitrii Tanese
Kevin Fidelin
Claire Wyart
Valentina Emiliani
机构
[1] Wavefront-Engineering Microscopy Group,
[2] Neurophotonics Laboratory,undefined
[3] CNRS UMR 8250,undefined
[4] Paris Descartes University,undefined
[5] UFR Biomédicale,undefined
[6] Institut national de la santé et de la recherche médicale (Inserm),undefined
[7] Institut du Cerveau et de la Moelle Épinière,undefined
[8] Present address: CNC Program,undefined
[9] Stanford University,undefined
[10] Stanford,undefined
[11] California 94305,undefined
[12] USA.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.
引用
收藏
相关论文
共 50 条
  • [21] Three-dimensional patterns
    不详
    TRANSVERSE PATTERNS IN NONLINEAR OPTICAL RESONATORS, 2003, 183 : 193 - 203
  • [22] Holographic Whisper: Rendering Audible Sound Spots in Three-dimensional Space by Focusing Ultrasonic Waves
    Ochiai, Yoichi
    Hoshi, Takayuki
    Suzuki, Ippei
    PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, : 4314 - 4325
  • [23] Three-dimensional capture systems for holographic display
    He, Zehao
    Cao, Liangcai
    ULTRA-HIGH-DEFINITION IMAGING SYSTEMS III, 2020, 11305
  • [24] Digital holographic three-dimensional imaging spectrometry
    Teeranutranont, Sirawit
    Yoshimori, Kyu
    APPLIED OPTICS, 2013, 52 (01) : A388 - A396
  • [25] Mathematical model for Three-dimensional Holographic Transmissions
    Primera, Richard
    TELEMATIQUE, 2005, 4 (02): : 1 - 26
  • [26] Three-dimensional holographic communication system for the metaverse
    He, Lidan
    Liu, Kexuan
    He, Zehao
    Cao, Liangcai
    OPTICS COMMUNICATIONS, 2023, 526
  • [27] Three-dimensional holographic photostimulation of the dendritic arbor
    Yang, Sunggu
    Papagiakoumou, Eirini
    Guillon, Marc
    de Sars, Vincent
    Tang, Cha-Min
    Emiliani, Valentina
    JOURNAL OF NEURAL ENGINEERING, 2011, 8 (04)
  • [28] Holographic three-dimensional fluids with nontrivial vorticity
    Leigh, Robert G.
    Petkou, Anastasios C.
    Petropoulos, P. Marios
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [29] Alignment sensitivity of holographic three-dimensional disks
    Li, Hsin-Yu Sidney
    Psaltis, Demetri
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1995, 12 (09): : 1902 - 1912
  • [30] Volume holographic imaging of three-dimensional objects
    Barbastathis, G
    Brady, DJ
    DIFFRACTIVE AND HOLOGRAPHIC TECHNOLOGIES, SYSTEMS, AND SPATIAL LIGHT MODULATORS VI, 1999, 3633 : 170 - 181