Experimental measurement-device-independent verification of quantum steering

被引:0
|
作者
Sacha Kocsis
Michael J. W. Hall
Adam J. Bennet
Dylan J. Saunders
Geoff J. Pryde
机构
[1] Centre for Quantum Dynamics,Department of Physics
[2] Griffith University,undefined
[3] Institut für Gravitationsphysik,undefined
[4] Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),undefined
[5] Clarendon Laboratory,undefined
[6] University of Oxford,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein–Podolsky–Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
引用
收藏
相关论文
共 50 条
  • [41] Measurement-device-independent mutual quantum entity authentication
    Choi, Ji-Woong
    Kang, Min-Sung
    Park, Chang Hoon
    Yang, Hyung-Jin
    Han, Sang-Wook
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [42] A measurement-device-independent quantum secure digital payment
    Wang, Qingle
    Liu, Jiacheng
    Li, Guodong
    Han, Yunguang
    Zhou, Yuqian
    Cheng, Long
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 655
  • [43] Deterministic measurement-device-independent quantum secret sharing
    ZiKai Gao
    Tao Li
    ZhenHua Li
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [44] Measurement-device-independent quantum communication with an untrusted source
    Xu, Feihu
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [45] Measurement-device-independent quantum wireless network communication
    Yong-Li Yang
    Yu-Guang Yang
    Yi-Hua Zhou
    Wei-Min Shi
    Dan Li
    Quantum Information Processing, 21
  • [46] Measurement-device-independent quantum secure direct communication
    ZengRong Zhou
    YuBo Sheng
    PengHao Niu
    LiuGuo Yin
    GuiLu Long
    Lajos Hanzo
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [47] Measurement-device-independent mutual quantum entity authentication
    Ji-Woong Choi
    Min-Sung Kang
    Chang Hoon Park
    Hyung-Jin Yang
    Sang-Wook Han
    Quantum Information Processing, 2021, 20
  • [48] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [49] Measurement-device-independent quantum secure multiparty summation
    Shi, Run-Hua
    Liu, Bai
    Zhang, Mingwu
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [50] Measurement-device-independent quantum communication without encryption
    Niu, Peng-Hao
    Zhou, Zeng-Rong
    Lin, Zai-Sheng
    Sheng, Yu-Bo
    Yin, Liu-Guo
    Long, Gui-Lu
    SCIENCE BULLETIN, 2018, 63 (20) : 1345 - 1350