Experimental measurement-device-independent verification of quantum steering

被引:0
|
作者
Sacha Kocsis
Michael J. W. Hall
Adam J. Bennet
Dylan J. Saunders
Geoff J. Pryde
机构
[1] Centre for Quantum Dynamics,Department of Physics
[2] Griffith University,undefined
[3] Institut für Gravitationsphysik,undefined
[4] Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),undefined
[5] Clarendon Laboratory,undefined
[6] University of Oxford,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein–Podolsky–Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
引用
收藏
相关论文
共 50 条
  • [11] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [12] Experimental Measurement-Device-Independent Quantum Cryptographic Conferencing
    Du, Yifeng
    Liu, Yufeng
    Yang, Chengdong
    Zheng, Xiaodong
    Zhu, Shining
    Ma, Xiao-song
    PHYSICAL REVIEW LETTERS, 2025, 134 (04)
  • [13] Experimental measurement-device-independent quantum digital signatures
    Roberts, G. L.
    Lucamarini, M.
    Yuan, Z. L.
    Dynes, J. F.
    Comandar, L. C.
    Sharpe, A. W.
    Shields, A. J.
    Curty, M.
    Puthoor, I. V.
    Andersson, E.
    NATURE COMMUNICATIONS, 2017, 8
  • [14] Experimental Measurement-Device-Independent Quantum Conference Key Agreement
    Yang, Kui-Xing
    Mao, Ya-Li
    Chen, Hu
    Dong, Xiduo
    Zhu, Jiankun
    Wu, Jizhou
    Li, Zheng-Da
    PHYSICAL REVIEW LETTERS, 2024, 133 (21)
  • [15] Measurement-device-independent quantum dialogue
    石国芳
    Chinese Physics B, 2021, 30 (10) : 26 - 31
  • [16] Measurement-Device-Independent Quantum Cryptography
    Xu, Feihu
    Curty, Marcos
    Qi, Bing
    Lo, Hoi-Kwong
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03)
  • [17] Measurement-device-independent quantum dialogue
    Shi, Guo-Fang
    CHINESE PHYSICS B, 2021, 30 (10)
  • [18] Experimental measurement-device-independent quantum key distribution with uncharacterized encoding
    Wang, Chao
    Wang, Shuang
    Yin, Zhen-Qiang
    Chen, Wei
    Li, Hong-Wei
    Zhang, Chun-Mei
    Ding, Yu-Yang
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICS LETTERS, 2016, 41 (23) : 5596 - 5599
  • [19] Experimental measurement-device-independent quantum key distribution with imperfect sources
    Tang, Zhiyuan
    Wei, Kejin
    Bedroya, Olinka
    Qian, Li
    Lo, Hoi-Kwong
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [20] Experimental measurement-device-independent quantum random-number generation
    Nie, You-Qi
    Guan, Jian-Yu
    Zhou, Hongyi
    Zhang, Qiang
    Ma, Xiongfeng
    Zhang, Jun
    Pan, Jian-Wei
    PHYSICAL REVIEW A, 2016, 94 (06)