Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

被引:3
|
作者
Dao-Yi Gong
Dong Guo
Yongqi Gao
Jing Yang
Rui Mao
Jingxuan Qu
Miaoni Gao
Sang Li
Seong-Joong Kim
机构
[1] Beijing Normal University,State Key Laboratory of Earth Surface Processes and Resource Ecology
[2] Chinese Academy of Sciences,Climate Change Research Center
[3] IAP/CAS,Nansen
[4] Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research,Zhu International Research Center
[5] Korea Polar Research Institute,Division of Polar Climate Change
来源
Climate Dynamics | 2017年 / 48卷
关键词
Winter Arctic Oscillation; Summer SST; Tropical Indian Ocean; Prediction model;
D O I
暂无
中图分类号
学科分类号
摘要
The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January–February–March AO is significantly correlated with the June–July–August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60^\circ$$\end{document}E and 10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}N), r=0.71\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.71$$\end{document}. The multi-month SST tendency, i.e., the SST difference of June–July–August minus April–May, is correlated with the winter AO at r=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.75$$\end{document}. Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer’s SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer’s SST and SST tendency, respectively. Investigation of the regional air–sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–75∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}E and 5∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer. Observational analysis and numerical experiments suggest the importance of the oceanic dynamics in connecting the winter AO and summer SST anomalies.
引用
收藏
页码:2471 / 2488
页数:17
相关论文
共 50 条
  • [31] The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia
    Juan AO
    Jianqi SUN
    AdvancesinAtmosphericSciences, 2016, 33 (05) : 644 - 655
  • [32] The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia
    Juan Ao
    Jianqi Sun
    Advances in Atmospheric Sciences, 2016, 33 : 644 - 655
  • [33] Two Distinct Modes of Tropical Indian Ocean Precipitation in Boreal Winter and Their Impacts on Equatorial Western Pacific
    Wu, Bo
    Zhou, Tianjun
    Li, Tim
    JOURNAL OF CLIMATE, 2012, 25 (03) : 921 - 938
  • [34] Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies
    Hill, K. J.
    Taschetto, A. S.
    England, M. H.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [35] Tropical intraseasonal oscillation at monthly time scale during boreal summer and winter
    V. Krishnamurthy
    Abheera Hazra
    Climate Dynamics, 2019, 53 : 3387 - 3407
  • [36] Tropical intraseasonal oscillation at monthly time scale during boreal summer and winter
    Krishnamurthy, V
    Hazra, Abheera
    CLIMATE DYNAMICS, 2019, 53 (5-6) : 3387 - 3407
  • [37] The Impact of the Tropical Indian Ocean on South Asian High in Boreal Summer
    黄刚
    屈侠
    胡开明
    AdvancesinAtmosphericSciences, 2011, 28 (02) : 421 - 432
  • [38] Impact of Boreal Summer Intraseasonal Oscillation on Environment of Tropical Cyclone Genesis over the Western North Pacific
    Yoshida, Ryuji
    Kajikawa, Yoshiyuki
    Ishikawa, Hirohiko
    SOLA, 2014, 10 : 15 - 18
  • [39] The Impact of the Tropical Indian Ocean on South Asian High in Boreal Summer
    Huang Gang
    Qu Xia
    Hu Kaiming
    ADVANCES IN ATMOSPHERIC SCIENCES, 2011, 28 (02) : 421 - 432
  • [40] Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase
    Ren, Rongcai
    Sun, Shuyue
    Yang, Yang
    Li, Qian
    CLIMATE DYNAMICS, 2016, 47 (5-6) : 1827 - 1844