Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

被引:3
|
作者
Dao-Yi Gong
Dong Guo
Yongqi Gao
Jing Yang
Rui Mao
Jingxuan Qu
Miaoni Gao
Sang Li
Seong-Joong Kim
机构
[1] Beijing Normal University,State Key Laboratory of Earth Surface Processes and Resource Ecology
[2] Chinese Academy of Sciences,Climate Change Research Center
[3] IAP/CAS,Nansen
[4] Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research,Zhu International Research Center
[5] Korea Polar Research Institute,Division of Polar Climate Change
来源
Climate Dynamics | 2017年 / 48卷
关键词
Winter Arctic Oscillation; Summer SST; Tropical Indian Ocean; Prediction model;
D O I
暂无
中图分类号
学科分类号
摘要
The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January–February–March AO is significantly correlated with the June–July–August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60^\circ$$\end{document}E and 10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}N), r=0.71\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.71$$\end{document}. The multi-month SST tendency, i.e., the SST difference of June–July–August minus April–May, is correlated with the winter AO at r=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0.75$$\end{document}. Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer’s SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer’s SST and SST tendency, respectively. Investigation of the regional air–sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–75∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}E and 5∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}–10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^\circ$$\end{document}S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer. Observational analysis and numerical experiments suggest the importance of the oceanic dynamics in connecting the winter AO and summer SST anomalies.
引用
收藏
页码:2471 / 2488
页数:17
相关论文
共 50 条
  • [21] Effects of air-sea coupling on the eastward propagating boreal winter intraseasonal oscillation over the tropical Indian Ocean
    LI Chun-Hui
    LIN Ai-Lan
    Tim Ll
    AtmosphericandOceanicScienceLetters, 2017, 10 (01) : 51 - 57
  • [22] Characteristics of the Northward Propagation of Summer Intraseasonal Oscillation over the Tropical Indian Ocean
    Liu Y.
    Yang H.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59 (04): : 569 - 580
  • [23] Effects of Whole SST Anomaly in the Tropical Indian Ocean on Summer rainfall Over Central Asia
    Meng, Lixia
    Zhao, Yong
    Li, Mingang
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [24] Structure and Origin of the Quasi-Biweekly Oscillation over the Tropical Indian Ocean in Boreal Spring
    Wen, Min
    Li, Tim
    Zhang, Renhe
    Qi, Yanjun
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2010, 67 (06) : 1965 - 1982
  • [25] Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean
    Li, F
    Ramanathan, V
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D16): : AAC2 - 1
  • [26] Summer precipitation–SST relationship on different time scales in the northern tropical Indian Ocean and western Pacific
    Renguang Wu
    Climate Dynamics, 2019, 52 : 5911 - 5926
  • [27] Effects of air–sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean
    Ailan Lin
    Tim Li
    Xiouhua Fu
    Jing-Jia Luo
    Yukio Masumoto
    Climate Dynamics, 2011, 37 : 2303 - 2322
  • [28] Impacts of the Tropical Pacific-Indian Ocean Associated Mode on Madden-Julian Oscillation over the Maritime Continent in Boreal Winter
    Li, Xin
    Yin, Ming
    Chen, Xiong
    Yang, Minghao
    Xia, Fei
    Li, Lifeng
    Chen, Guangchao
    Yu, Peilong
    Zhang, Chao
    ATMOSPHERE, 2020, 11 (10)
  • [29] Boreal Summer Negative Correlation Relationship Between Interannual SST and Precipitation Anomalies in the Tropical and Subtropical Western North Pacific
    Xue, Wei
    Sun, Xuguang
    Yang, Xiu-Qun
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (06)
  • [30] The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia
    Ao, Juan
    Sun, Jianqi
    ADVANCES IN ATMOSPHERIC SCIENCES, 2016, 33 (05) : 644 - 655