Nucleon structure functions in noncommutative space-time

被引:0
|
作者
A. Rafiei
Z. Rezaei
A. Mirjalili
机构
[1] Yazd university,Physics Department
来源
关键词
Structure Function; Star Product; Gluon Distribution; Lorentz Violation; Gluon Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\mu \nu }$$\end{document}. To check our results we plot the nucleon structure function (NSF), F2(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2(x)$$\end{document}, and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of ΛNC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{\mathrm{NC}}$$\end{document} scale which correspond to recent reports.
引用
收藏
相关论文
共 50 条
  • [41] Space-Time Diffeomorphisms in Noncommutative Gauge Theories
    Rosenbaum, Marcos
    Vergara, J. David
    Juarez, L. Roman
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [42] Probing noncommutative space-time in the laboratory frame
    Jun-ichi Kamoshita
    The European Physical Journal C, 2007, 52 : 451 - 457
  • [43] Mass Defect in the Noncommutative Schwarzschild Space-Time
    Linsen Zhang
    Jialin Zhang
    Zhiying Zhu
    Xiangyun Fu
    Zhengxiang Li
    International Journal of Theoretical Physics, 2010, 49 : 974 - 978
  • [44] A new limit for the noncommutative space-time parameter
    Moumni, Mustafa
    BenSlama, Achour
    Zaim, Slimane
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 151 - 156
  • [45] Unitarity in space-time noncommutative field theories
    Rim, C
    Yee, JH
    PHYSICS LETTERS B, 2003, 574 (1-2) : 111 - 120
  • [46] Canonical quantum gravity on noncommutative space-time
    Kober, Martin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (17):
  • [47] EMERGENT GRAVITY FROM NONCOMMUTATIVE SPACE-TIME
    Yang, Hyun Seok
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (24): : 4473 - 4517
  • [48] Hamiltonian formalism for space-time noncommutative theories
    Gomis, J
    Kamimura, K
    Llosa, J
    PHYSICAL REVIEW D, 2001, 63 (04)
  • [49] k-Inflation in noncommutative space-time
    Feng, Chao-Jun
    Li, Xin-Zhou
    Liu, Dao-Jun
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (02): : 1 - 8
  • [50] Closed superstring in noncommutative compact space-time
    Kamani, D
    MODERN PHYSICS LETTERS A, 2002, 17 (37) : 2443 - 2451