Nucleon structure functions in noncommutative space-time

被引:0
|
作者
A. Rafiei
Z. Rezaei
A. Mirjalili
机构
[1] Yazd university,Physics Department
来源
关键词
Structure Function; Star Product; Gluon Distribution; Lorentz Violation; Gluon Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\mu \nu }$$\end{document}. To check our results we plot the nucleon structure function (NSF), F2(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2(x)$$\end{document}, and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of ΛNC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{\mathrm{NC}}$$\end{document} scale which correspond to recent reports.
引用
收藏
相关论文
共 50 条
  • [31] Chiral gauge anomalies on noncommutative space-time
    Martín, CP
    STRING THEORY, 2002, 607 : 174 - 180
  • [32] Mass Defect in the Noncommutative Schwarzschild Space-Time
    Zhang, Linsen
    Zhang, Jialin
    Zhu, Zhiying
    Fu, Xiangyun
    Li, Zhengxiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (05) : 974 - 978
  • [33] Space-time symmetry of noncommutative field theory
    Gonera, C
    Kosinski, P
    Maslanka, P
    Giller, S
    PHYSICS LETTERS B, 2005, 622 (1-2) : 192 - 197
  • [34] Very Special Relativity and Noncommutative Space-Time
    Sheikh-Jabbari, M. M.
    Tureanu, A.
    COSMOLOGY, QUANTUM VACUUM AND ZETA FUNCTIONS: IN HONOR OF EMILIO ELIZALDE, 2011, 137 : 301 - +
  • [35] THERMODYNAMICS OF NONCOMMUTATIVE DE SITTER SPACE-TIME
    Vakili, B.
    Khosravi, N.
    Sepangi, H. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (01): : 159 - 171
  • [36] Effective field theories on noncommutative space-time
    Calmet, X
    Wohlgenannt, M
    PHYSICAL REVIEW D, 2003, 68 (02)
  • [37] Noncommutative fluid dynamics in the Snyder space-time
    Abdalla, M. C. B.
    Holender, L.
    Santos, M. A.
    Vancea, I. V.
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [38] Probing noncommutative space-time in the laboratory frame
    Kamoshita, Jun-ichi
    EUROPEAN PHYSICAL JOURNAL C, 2007, 52 (02): : 451 - 457
  • [39] Space-time noncommutative field theories and unitarity
    Gomis, J
    Mehen, T
    NUCLEAR PHYSICS B, 2000, 591 (1-2) : 265 - 276
  • [40] A cyclic integral on κ-Minkowski noncommutative space-time
    Agostini, Alessandra
    Amelino-Camelia, Giovanni
    Arzano, Michele
    D'Andrea, Francesco
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (15): : 3133 - 3150