Nucleon structure functions in noncommutative space-time

被引:0
|
作者
A. Rafiei
Z. Rezaei
A. Mirjalili
机构
[1] Yazd university,Physics Department
来源
关键词
Structure Function; Star Product; Gluon Distribution; Lorentz Violation; Gluon Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\mu \nu }$$\end{document}. To check our results we plot the nucleon structure function (NSF), F2(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2(x)$$\end{document}, and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of ΛNC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{\mathrm{NC}}$$\end{document} scale which correspond to recent reports.
引用
收藏
相关论文
共 50 条
  • [1] Nucleon structure functions in noncommutative space-time
    Rafiei, A.
    Rezaei, Z.
    Mirjalili, A.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (05):
  • [2] Noncommutative geometry and structure of space-time
    Chamseddine, Ali H.
    AFRIKA MATEMATIKA, 2020, 31 (01) : 15 - 27
  • [3] Birefringence and noncommutative structure of space-time
    Maceda, Marco
    Macias, Alfredo
    PHYSICS LETTERS B, 2011, 705 (1-2) : 157 - 160
  • [4] Space-time structure of a bound nucleon
    Molochkov, AV
    NUCLEAR PHYSICS A, 2000, 666 : 169C - 172C
  • [5] Noncommutative differential geometry and the structure of space-time
    Connes, A
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 49 - 80
  • [6] GREEN FUNCTIONS IN LORENTZ INVARIANT NONCOMMUTATIVE SPACE-TIME
    Abreu, Everton M. C.
    Neves, Mario J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (20):
  • [7] Noncommutative geometry, symmetries and quantum structure of space-time
    Govindarajan, T. R.
    Gupta, Kumar S.
    Harikumar, E.
    Meljanac, S.
    5TH INTERNATIONAL WORKSHOP DICE2010: SPACE-TIME-MATTER - CURRENT ISSUES IN QUANTUM MECHANICS AND BEYOND, 2011, 306
  • [8] Noncommutative space-time models
    Gromov, NA
    Kuratov, VV
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (11) : 1421 - 1426
  • [9] The Geometry of Noncommutative Space-Time
    Mendes, R. Vilela
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (01) : 259 - 269
  • [10] Events in a noncommutative space-time
    Toller, M
    PHYSICAL REVIEW D, 2004, 70 (02)