Instantons and Yang–Mills Flows on Coset Spaces

被引:0
|
作者
Tatiana A. Ivanova
Olaf Lechtenfeld
Alexander D. Popov
Thorsten Rahn
机构
[1] Bogoliubov Laboratory of Theoretical Physics,Institut für Theoretische Physik
[2] JINR,undefined
[3] Leibniz Universität Hannover,undefined
来源
关键词
81T13; 83E15; Yang-Mills instantons; kinks; flows;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Yang–Mills flow equations on a reductive coset space G/H and the Yang–Mills equations on the manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang–Mills equations to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^4}$$\end{document}-kink equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}. Depending on the boundary conditions and torsion, we obtain solutions to the Yang–Mills equations describing instantons, chains of instanton–anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang–Mills flow equations and compare them with the Yang–Mills solutions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}.
引用
收藏
页码:231 / 247
页数:16
相关论文
共 50 条
  • [41] Yang-Mills like instantons in eight and seven dimensions
    Loginov, E. K.
    Loginova, E. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [42] SEMICLASSICAL YANG-MILLS THEORY-I - INSTANTONS
    GROISSER, D
    PARKER, TH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) : 101 - 140
  • [43] Yang-Mills instantons as the endpoint of black hole evaporation
    Chen, Pisin
    Chew, Xiao Yan
    Sasaki, Misao
    Yeom, Dong-han
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [44] Linear Dynamical Systems and Instantons in Yang-Mills Theory
    Helmke, U.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (2-3) : 151 - 166
  • [45] TOPOLOGY OF EUCLIDEAN YANG-MILLS FIELDS - INSTANTONS AND MONOPOLES
    YONEYA, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) : 1759 - 1762
  • [46] Spin(7)-manifolds and symmetric Yang-Mills instantons
    Etesi, G
    PHYSICS LETTERS B, 2001, 521 (3-4) : 391 - 399
  • [47] Modified Levy Laplacian on manifold and Yang-Mills instantons
    Volkov, B. O.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (20-21):
  • [48] Coset space dimensional reduction of Einstein-Yang-Mills theory
    Chatzistavrakidis, A.
    Manousselis, P.
    Prezas, N.
    Zoupanos, G.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (4-5): : 389 - 399
  • [49] Spin(7) Instantons and Hermitian Yang–Mills Connections for the Stenzel Metric
    Vasileios Ektor Papoulias
    Communications in Mathematical Physics, 2021, 384 : 2009 - 2066
  • [50] Biquaternion Construction of SL(2,C) Yang-Mills Instantons
    Lee, Jen-Chi
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670