Instantons and Yang–Mills Flows on Coset Spaces

被引:0
|
作者
Tatiana A. Ivanova
Olaf Lechtenfeld
Alexander D. Popov
Thorsten Rahn
机构
[1] Bogoliubov Laboratory of Theoretical Physics,Institut für Theoretische Physik
[2] JINR,undefined
[3] Leibniz Universität Hannover,undefined
来源
关键词
81T13; 83E15; Yang-Mills instantons; kinks; flows;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Yang–Mills flow equations on a reductive coset space G/H and the Yang–Mills equations on the manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang–Mills equations to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^4}$$\end{document}-kink equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}. Depending on the boundary conditions and torsion, we obtain solutions to the Yang–Mills equations describing instantons, chains of instanton–anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang–Mills flow equations and compare them with the Yang–Mills solutions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}\times G/H}$$\end{document}.
引用
收藏
页码:231 / 247
页数:16
相关论文
共 50 条