On the largest prime factor of the partition function of n

被引:0
|
作者
Florian Luca
机构
[1] Universidad Nacional Autonoma de México,Instituto de Matemáticas
[2] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory
来源
The Ramanujan Journal | 2012年 / 28卷
关键词
Partition function; Largest prime factor; 11P99; 11A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(n) be the function that counts the number of partitions of n. For a positive integer m, let P(m) be the largest prime factor of m. Here, we show that P(p(n)) tends to infinity when n tends to infinity through some set of asymptotic density 1. In fact, we show that the inequality P(p(n))>loglogloglogloglogn holds for almost all positive integers n. Features of the proof are the first term in Rademacher’s formula for p(n), Gowers’ effective version of Szemerédi’s theorem, and a classical lower bound for a nonzero homogeneous linear form in logarithms of algebraic numbers due to Matveev.
引用
收藏
页码:423 / 434
页数:11
相关论文
共 50 条