On the largest prime factor of the partition function of n

被引:0
|
作者
Florian Luca
机构
[1] Universidad Nacional Autonoma de México,Instituto de Matemáticas
[2] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory
来源
The Ramanujan Journal | 2012年 / 28卷
关键词
Partition function; Largest prime factor; 11P99; 11A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(n) be the function that counts the number of partitions of n. For a positive integer m, let P(m) be the largest prime factor of m. Here, we show that P(p(n)) tends to infinity when n tends to infinity through some set of asymptotic density 1. In fact, we show that the inequality P(p(n))>loglogloglogloglogn holds for almost all positive integers n. Features of the proof are the first term in Rademacher’s formula for p(n), Gowers’ effective version of Szemerédi’s theorem, and a classical lower bound for a nonzero homogeneous linear form in logarithms of algebraic numbers due to Matveev.
引用
收藏
页码:423 / 434
页数:11
相关论文
共 50 条
  • [31] Largest prime factor of the whole polynomial values
    De La Breteche, R.
    Mestre, J-F.
    ACTA ARITHMETICA, 2015, 169 (03) : 221 - 250
  • [32] The largest prime factor of the integers in an interval, II
    Heath-Brown, DR
    Jia, CH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 498 : 35 - 59
  • [33] On the largest prime factor of numerators of Bernoulli numbers
    Berczes, Attila
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2): : 128 - 134
  • [34] SHIFTED VALUES OF THE LARGEST PRIME FACTOR FUNCTION AND ITS AVERAGE VALUE IN SHORT INTERVALS
    De Koninck, Jean-Marie
    Katai, Imre
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 39 - 62
  • [35] REMARK ON FACTOR 1-N IN PARTITION-FUNCTION
    BUCHDAHL, HA
    AMERICAN JOURNAL OF PHYSICS, 1974, 42 (01) : 51 - 53
  • [36] Consecutive Integers Divisible by a Power of their Largest Prime Factor
    De Koninck, Jean-Marie
    Moineau, Matthieu
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (09)
  • [37] SUMMING THE LARGEST PRIME FACTOR OVER INTEGER SEQUENCES
    De Koninck, Jean-Marie
    Jakimczuk, Rafael
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 27 - 35
  • [38] The largest prime factor of X3+2
    Heath-Brown, DR
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 82 : 554 - 596
  • [39] ADDITIVE-FUNCTIONS AND THE LARGEST PRIME FACTOR OF INTEGERS
    DEKONINCK, JM
    KATAI, I
    MERCIER, A
    JOURNAL OF NUMBER THEORY, 1989, 33 (03) : 293 - 310
  • [40] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366