On the largest prime factor of the partition function of n

被引:0
|
作者
Florian Luca
机构
[1] Universidad Nacional Autonoma de México,Instituto de Matemáticas
[2] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory
来源
The Ramanujan Journal | 2012年 / 28卷
关键词
Partition function; Largest prime factor; 11P99; 11A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(n) be the function that counts the number of partitions of n. For a positive integer m, let P(m) be the largest prime factor of m. Here, we show that P(p(n)) tends to infinity when n tends to infinity through some set of asymptotic density 1. In fact, we show that the inequality P(p(n))>loglogloglogloglogn holds for almost all positive integers n. Features of the proof are the first term in Rademacher’s formula for p(n), Gowers’ effective version of Szemerédi’s theorem, and a classical lower bound for a nonzero homogeneous linear form in logarithms of algebraic numbers due to Matveev.
引用
收藏
页码:423 / 434
页数:11
相关论文
共 50 条
  • [1] On the largest prime factor of the partition function of n
    Cilleruelo, Javier
    Luca, Florian
    ACTA ARITHMETICA, 2012, 156 (01) : 29 - 38
  • [2] On the largest prime factor of the partition function of n
    Luca, Florian
    RAMANUJAN JOURNAL, 2012, 28 (03): : 423 - 434
  • [3] The largest prime factor of Landau's function
    Deleglise, M.
    Nicolas, J. -L.
    RAMANUJAN JOURNAL, 2012, 27 (01): : 109 - 145
  • [4] Exponential sums involving the largest prime factor function
    De Koninck, Jean-Marie
    Katai, Imre
    ACTA ARITHMETICA, 2011, 146 (03) : 233 - 245
  • [5] LARGEST PRIME FACTOR
    KEMENY, JG
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 89 (1-2) : 181 - 186
  • [6] On a problem of Erdos involving the largest prime factor of n
    Ivic, A
    MONATSHEFTE FUR MATHEMATIK, 2005, 145 (01): : 35 - 46
  • [7] On the largest prime factor of n2 C 1
    Merikoski, Jori
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (04) : 1253 - 1284
  • [8] On a Problem of Erdős Involving the Largest Prime Factor of n
    Aleksandar Ivić
    Monatshefte für Mathematik, 2005, 145 : 35 - 46
  • [9] ON THE LARGEST PRIME FACTOR OF AN INTEGER
    DEKONINCK, JM
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (01): : 13 - 37
  • [10] On the largest prime factor of integers
    Jia, CH
    Liu, MC
    ACTA ARITHMETICA, 2000, 95 (01) : 17 - 48