Generalized quasi-harmonic method for analyzing phase-locked systems

被引:0
|
作者
A. F. Gribov
B. I. Shakhtarin
机构
[1] Bauman Moscow State Technical University,
来源
Journal of Communications Technology and Electronics | 2013年 / 58卷
关键词
Nonlinear Differential Equation; Harmonic Balance; Harmonic Balance Method; Hurwitz Criterion; Multi Plicity;
D O I
暂无
中图分类号
学科分类号
摘要
The quasi-harmonic linearization method is generalized to the case where the anticipated solution to the nonlinear differential equation of a phase-locked system involves an arbitrary number of harmonics. Governing relationships, which make it possible to find l-multiple φ cycles and investigate their stability, have been derived for the system of an arbitrary order. The examples illustrating the analysis of the third-order system are presented.
引用
收藏
页码:1070 / 1075
页数:5
相关论文
共 50 条
  • [41] A Method of Phase-locked loop Performance Testing
    Zhang, Ping
    Zhang, Jianmin
    Song, Yanmin
    Xing, Zuocheng
    Deng, Qinxue
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 4885 - +
  • [42] Compensation method of phase-locked loop under unbalanced grid condition based on harmonic linearization
    Zha, Xiaoming
    Cen, Yang
    Huang, Meng
    Peng, Dongdong
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2018, 46 (06) : 1181 - 1203
  • [43] Single-Phase Phase-Locked Loop for DC Offset and Harmonic Interference
    Zeng J.
    Cen D.
    Chen R.
    Liu J.
    Liu, Junfeng (aujfliu@scut.edu.cn), 1600, China Machine Press (36): : 3504 - 3515
  • [44] A Frequency Adaptive Single-Phase Phase-Locked Loop with Harmonic Rejection
    Sagha, Hossein
    Ledwich, Gerard
    Ghosh, Arindam
    Nourbakhsh, Ghavameddin
    IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014, : 1028 - 1033
  • [45] A method for fast estimation of slowly changing parameters of a quasi-harmonic signal
    Nikitin, Andrey V.
    Pshenichnyy, Kirill A.
    Yushanov, Sergey V.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (02)
  • [46] On the Generalized Gardner Problem for Phase-Locked Loops in Electrical Grids
    N. V. Kuznetsov
    M. Yu. Lobachev
    M. V. Yuldashev
    R. V. Yuldashev
    S. I. Volskiy
    D. A. Sorokin
    Doklady Mathematics, 2021, 103 : 157 - 161
  • [47] PERIODIC DISTURBANCE CANCELLATION USING A GENERALIZED PHASE-LOCKED LOOP
    Schilling, R. J.
    Al-Ajlouni, A. F.
    Sazonov, E. S.
    Ziarani, A. K.
    CONTROL AND INTELLIGENT SYSTEMS, 2010, 38 (01) : 16 - 23
  • [48] On the Generalized Gardner Problem for Phase-Locked Loops in Electrical Grids
    Kuznetsov, N. V.
    Lobachev, M. Yu.
    Yuldashev, M. V.
    Yuldashev, R. V.
    Volskiy, S. I.
    Sorokin, D. A.
    DOKLADY MATHEMATICS, 2021, 103 (03) : 157 - 161
  • [49] MODEL OF THE ORIENTATIONAL GLASSY STATE IN PURE SYSTEMS - A QUASI-HARMONIC APPROXIMATION
    ZIELINSKI, P
    ZABINSKA, K
    ACTA PHYSICA POLONICA A, 1989, 76 (03) : 501 - 511
  • [50] Discrete phase-locked loop for three-phase systems
    Escobar, G.
    Ho, C. N. M.
    Pettersson, S.
    Vazquez, G.
    Ordonez-Lopez, E. E.
    IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014, : 4947 - 4953