Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings

被引:0
|
作者
Ghosh, Sourav [1 ]
Dhara, Basudeb [2 ]
Sandhu, Gurninder S. [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[3] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
来源
关键词
Prime ring; Semiprime ring; One sided ideal; Extended centroid; Derivation; Multiplicative generalized derivation; GENERALIZED DERIVATIONS; LIE IDEALS; PRIME; ALGEBRAS;
D O I
10.1007/s40590-024-00620-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R), lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a nonzero left-sided ideal of R, 0 not equal a is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a\in R$$\end{document} and F,G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F, G: R\rightarrow R$$\end{document} be multiplicative (generalized)-derivations of R associated to the maps d,g:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,g:R\rightarrow R$$\end{document}, respectively. In the present paper, we study the following identities: a(G(xy)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document};a(G(xy)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document}; for all x,y is an element of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \lambda $$\end{document}.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Generalized derivations with annihilator conditions in prime rings
    Ali, Asma
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 783 - 792
  • [32] On centrally-extended multiplicative (generalized)-(α, β)-derivations in semiprime rings
    Muthana, Najat
    Alkhamisi, Zakeiah
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 578 - 585
  • [33] Generalized derivations with nilpotent values on Lie ideals in semiprime rings
    Ammendolia, Francesco
    Scudo, Giovanni
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (03): : 727 - 743
  • [34] PRIME AND SEMIPRIME RINGS INVOLVING MULTIPLICATIVE (GENERALIZED)-SKEW DERIVATIONS
    Boua, A.
    Ashraf, M.
    Abdelwanis, A. Y.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 89 - 104
  • [35] Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 154 - 167
  • [36] ON LIE IDEALS AND DERIVATIONS OF SEMIPRIME RINGS
    AVRAAMOVA, OD
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (04): : 73 - 74
  • [37] Annihilator on prime rings admitting multiplicative generalized g-derivations
    Kumar K.
    Mishra A.K.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1405 - 1416
  • [38] Annihilator condition of a pair of derivations in prime and semiprime rings
    Basudeb Dhara
    Nurcan Argaç
    Krishna Gopal Pradhan
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 111 - 124
  • [39] On Semiprime Rings with Generalized Derivations
    Khan, Mohd Rais
    Hasnain, Mohammad Mueenul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04): : 565 - 571
  • [40] Annihilator condition of a pair of derivations in prime and semiprime rings
    Dhara, Basudeb
    Argac, Nurcan
    Pradhan, Krishna Gopal
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (01): : 111 - 124