Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings

被引:0
|
作者
Ghosh, Sourav [1 ]
Dhara, Basudeb [2 ]
Sandhu, Gurninder S. [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[3] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
来源
关键词
Prime ring; Semiprime ring; One sided ideal; Extended centroid; Derivation; Multiplicative generalized derivation; GENERALIZED DERIVATIONS; LIE IDEALS; PRIME; ALGEBRAS;
D O I
10.1007/s40590-024-00620-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R), lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a nonzero left-sided ideal of R, 0 not equal a is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a\in R$$\end{document} and F,G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F, G: R\rightarrow R$$\end{document} be multiplicative (generalized)-derivations of R associated to the maps d,g:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,g:R\rightarrow R$$\end{document}, respectively. In the present paper, we study the following identities: a(G(xy)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document};a(G(xy)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document}; for all x,y is an element of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \lambda $$\end{document}.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A note on multiplicative (generalized) derivations with annihilator conditions
    Dhara, Basudeb
    Pradhan, Krishna Gopal
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (02) : 191 - 198
  • [22] On one sided ideals of a semiprime ring with generalized derivations
    Ali, Asma
    De Filippis, Vincenzo
    Shujat, Faiza
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 529 - 537
  • [23] On one sided ideals of a semiprime ring with generalized derivations
    Asma Ali
    Vincenzo De Filippis
    Faiza Shujat
    Aequationes mathematicae, 2013, 85 : 529 - 537
  • [24] ON THE ANNIHILATOR OF ONE-SIDED MAXIMAL NIL IDEALS IN SEMIPRIME RINGS
    DIFRANCO, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (01): : 67 - 70
  • [25] Engel conditions of generalized derivations on Lie ideals and left sided ideals in prime rings and Banach Algebras
    Dhara B.
    Ali A.
    Das D.
    Afrika Matematika, 2016, 27 (7-8) : 1391 - 1401
  • [26] ANNIHILATOR CONDITIONS OF MULTIPLICATIVE REVERSE DERIVATIONS ON PRIME RINGS
    Sandhu, Gurninder S.
    Kumar, Deepak
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 87 - 103
  • [27] Derivations with annihilator conditions on Lie ideals in prime rings
    Huang, Shuliang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [28] Generalized derivations with annihilator conditions in prime rings
    Asma Ali
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 783 - 792
  • [29] GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Wang, Yu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (05) : 917 - 922
  • [30] GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    Pradhan, Krishna Gopal
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 943 - 952