Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings

被引:0
|
作者
Ghosh, Sourav [1 ]
Dhara, Basudeb [2 ]
Sandhu, Gurninder S. [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[3] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
来源
关键词
Prime ring; Semiprime ring; One sided ideal; Extended centroid; Derivation; Multiplicative generalized derivation; GENERALIZED DERIVATIONS; LIE IDEALS; PRIME; ALGEBRAS;
D O I
10.1007/s40590-024-00620-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R), lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a nonzero left-sided ideal of R, 0 not equal a is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a\in R$$\end{document} and F,G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F, G: R\rightarrow R$$\end{document} be multiplicative (generalized)-derivations of R associated to the maps d,g:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,g:R\rightarrow R$$\end{document}, respectively. In the present paper, we study the following identities: a(G(xy)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document};a(G(xy)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document}; for all x,y is an element of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \lambda $$\end{document}.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multiplicative (generalized)-derivations and left ideals in semiprime rings
    Ali, Asma
    Dhara, Basudeb
    Khan, Shahoor
    Ali, Farhat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1293 - 1306
  • [2] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Swarup Kuila
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 631 - 640
  • [3] NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH MULTIPLICATIVE GENERALIZED (α, α) - DERIVATIONS
    Ulutas, Ercan
    Golbasi, Oznur
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 903 - 912
  • [4] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Kuila, Swarup
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 631 - 640
  • [5] MULTIPLICATIVE GENERALIZED DERIVATIONS ON IDEALS IN SEMIPRIME RINGS
    Golbas, Oznur
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1285 - 1296
  • [6] On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings
    Ali S.
    Dhara B.
    Dar N.A.
    Khan A.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1): : 325 - 337
  • [7] Some results on ideals of semiprime rings with multiplicative generalized derivations
    Koc, Emine
    Golbasi, Oznur
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) : 4905 - 4913
  • [8] MULTIPLICATIVE GENERALIZED DERIVATIONS ON LIE IDEALS IN SEMIPRIME RINGS II
    Koc, Emine
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 265 - 276
  • [9] Left Ideals and Pair of Generalized Derivations in Semiprime Rings
    Ali, Asma
    Khan, Shahoor
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 461 - 465
  • [10] On semiprime rings with multiplicative (generalized)-derivations
    Khan S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1): : 119 - 128