Recognition of strong earthquake–prone areas with a single learning class

被引:0
|
作者
A. D. Gvishiani
S. M. Agayan
B. A. Dzeboev
I. O. Belov
机构
[1] Geophysical Center of the Russian Academy of Sciences,Schmidt Institute of Physics of the Earth
[2] Russian Academy of Sciences,Geophysical Institute, Vladikavkaz Scientific Center
[3] Russian Academy of Sciences,undefined
来源
Doklady Earth Sciences | 2017年 / 474卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one “pure” high-seismic class. The new algorithm operates in the space of absolute values of the geological–geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with М ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
引用
收藏
页码:546 / 551
页数:5
相关论文
共 50 条
  • [31] Vibroseismic monitoring of earthquake-prone areas
    Glinskii, B.M.
    Kovalevskii, V.V.
    Khairetdinov, M.S.
    Volcanology and Seismology, 2000, 21 (06): : 723 - 730
  • [32] Strongest Earthquake-Prone Areas in Kamchatka
    Dzeboev, B. A.
    Agayan, S. M.
    Zharkikh, Yu. I.
    Krasnoperov, R. I.
    Barykina, Yu. V.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2018, 54 (02) : 284 - 291
  • [33] THE RESULTS OF SOVIET-FRENCH INVESTIGATIONS ON THE RECOGNITION OF EARTHQUAKE-PRONE AREAS IN THE WESTERN ALPS
    GVISHIANI, AD
    SALLANTIN, J
    SOLDANO, H
    CISTERNAS, A
    SOLOVIEV, AA
    DOKLADY AKADEMII NAUK SSSR, 1984, 275 (06): : 1353 - 1358
  • [34] Recognition of earthquake-prone areas (M aparts per thousandyen 5.0) in the Iberian Peninsula
    Gorshkov, A. I.
    Soloviev, A. A.
    Jimenez, M. J.
    Garcia-Fernandez, M.
    Panza, G. F.
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2010, 21 (02) : 131 - 162
  • [35] Recognition of earthquake-prone areas in the Altai-Sayan-Baikal region based on the morphostructural zoning
    Gorshkov, A., I
    Soloviev, A. A.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2021, 21 (01):
  • [36] Construction with porous concrete in earthquake-prone areas
    Anicic, Drazen
    GRADEVINAR, 2010, 62 (11): : 981 - 989
  • [37] Visualization of data on earthquake prone areas from the analysis of earthquake data vibrations
    Fitria
    Antonio, Yosianus
    Test Engineering and Management, 2019, 81 (11-12): : 5301 - 5308
  • [38] FCaZm Intelligent Recognition System for Locating Areas Prone to Strong Earthquakes in the Andean and Caucasian Mountain Belts
    Gvishiani, A. D.
    Dzeboev, B. A.
    Agayan, S. M.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2016, 52 (04) : 461 - 491
  • [39] FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts
    A. D. Gvishiani
    B. A. Dzeboev
    S. M. Agayan
    Izvestiya, Physics of the Solid Earth, 2016, 52 : 461 - 491
  • [40] HIGH-VOLTAGE SWITCHGEAR FOR EARTHQUAKE-PRONE AREAS
    CUK, N
    RAMSEIER, E
    BROWN BOVERI REVIEW, 1970, 57 (12): : 548 - &