Recognition of strong earthquake–prone areas with a single learning class

被引:0
|
作者
A. D. Gvishiani
S. M. Agayan
B. A. Dzeboev
I. O. Belov
机构
[1] Geophysical Center of the Russian Academy of Sciences,Schmidt Institute of Physics of the Earth
[2] Russian Academy of Sciences,Geophysical Institute, Vladikavkaz Scientific Center
[3] Russian Academy of Sciences,undefined
来源
Doklady Earth Sciences | 2017年 / 474卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one “pure” high-seismic class. The new algorithm operates in the space of absolute values of the geological–geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with М ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
引用
收藏
页码:546 / 551
页数:5
相关论文
共 50 条
  • [21] Strong (M ≥ 7.0) Earthquake-Prone Areas in Hellenides, Greece
    Gorshkov, A. I.
    Novikova, O. V.
    Gaudemer, Y.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2020, 56 (01) : 45 - 52
  • [22] System-Analytical Method of Earthquake-Prone Areas Recognition
    Dzeboev, Boris A.
    Gvishiani, Alexei D.
    Agayan, Sergey M.
    Belov, Ivan O.
    Karapetyan, Jon K.
    Dzeranov, Boris, V
    Barykina, Yuliya, V
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [23] Recognition of earthquake-prone areas (M ≥ 5.0) in the Iberian Peninsula
    A. I. Gorshkov
    A. A. Soloviev
    M. J. Jiménez
    M. García-Fernández
    G. F. Panza
    RENDICONTI LINCEI, 2010, 21 : 131 - 162
  • [24] FUZZY-BASED CLUSTERING OF EPICENTERS AND STRONG EARTHQUAKE-PRONE AREAS
    Gvishiani, Alexei
    Dobrovolsky, Mikhail
    Agayan, Sergey
    Dzeboev, Boris
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2013, 12 (01): : 1 - 10
  • [25] Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap
    Gorshkov, A.
    Novikova, O.
    ACTA GEOPHYSICA, 2018, 66 (05): : 843 - 853
  • [26] Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap
    A. Gorshkov
    O. Novikova
    Acta Geophysica, 2018, 66 : 843 - 853
  • [27] Strong Earthquake-Prone Areas in the Eastern Sector of the Arctic Zone of the Russian Federation
    Gvishiani, Alexei D.
    Dzeboev, Boris A.
    Dzeranov, Boris V.
    Kedrov, Ernest O.
    Skorkina, Anna A.
    Nikitina, Izabella M.
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [28] Geoblocks Recognition and Delineation of the Earthquake Prone Areas in the Tuan Giao Area (Northwest Vietnam)
    N. H. Tuyen
    Ph. V. Phach
    R. B. Shakirov
    C. D. Trong
    Ph. N. Hung
    L. D. Anh
    Geotectonics, 2018, 52 : 359 - 381
  • [29] Geoblocks Recognition and Delineation of the Earthquake Prone Areas in the Tuan Giao Area (Northwest Vietnam)
    Tuyen, N. H.
    Phach, Ph. V.
    Shakirov, R. B.
    Trong, C. D.
    Hung, Ph. N.
    Anh, L. D.
    GEOTECTONICS, 2018, 52 (03) : 359 - 381
  • [30] Strongest Earthquake-Prone Areas in Kamchatka
    B. A. Dzeboev
    S. M. Agayan
    Yu. I. Zharkikh
    R. I. Krasnoperov
    Yu. V. Barykina
    Izvestiya, Physics of the Solid Earth, 2018, 54 : 284 - 291