Recognition of strong earthquake–prone areas with a single learning class

被引:0
|
作者
A. D. Gvishiani
S. M. Agayan
B. A. Dzeboev
I. O. Belov
机构
[1] Geophysical Center of the Russian Academy of Sciences,Schmidt Institute of Physics of the Earth
[2] Russian Academy of Sciences,Geophysical Institute, Vladikavkaz Scientific Center
[3] Russian Academy of Sciences,undefined
来源
Doklady Earth Sciences | 2017年 / 474卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one “pure” high-seismic class. The new algorithm operates in the space of absolute values of the geological–geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with М ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
引用
收藏
页码:546 / 551
页数:5
相关论文
共 50 条
  • [1] Recognition of strong earthquake-prone areas with a single learning class
    Gvishiani, A. D.
    Agayan, S. M.
    Dzeboev, B. A.
    Belov, I. O.
    DOKLADY EARTH SCIENCES, 2017, 474 (01) : 546 - 551
  • [2] A new approach to recognition of the strong earthquake-prone areas in the Caucasus
    A. D. Gvishiani
    B. A. Dzeboev
    S. M. Agayan
    Izvestiya, Physics of the Solid Earth, 2013, 49 : 747 - 766
  • [3] A new approach to recognition of the strong earthquake-prone areas in the Caucasus
    Gvishiani, A. D.
    Dzeboev, B. A.
    Agayan, S. M.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2013, 49 (06) : 747 - 766
  • [4] Recognition of Strong Earthquake Prone Areas in the Altai–Sayan–Baikal Region
    A. I. Gorshkov
    A. A. Soloviev
    Ju. I. Zharkikh
    Doklady Earth Sciences, 2018, 479 : 412 - 414
  • [5] Recognition of Strong Earthquake Prone Areas in the Altai-Sayan-Baikal Region
    Gorshkov, A. I.
    Soloviev, A. A.
    Zharkikh, Ju. I.
    DOKLADY EARTH SCIENCES, 2018, 479 (01) : 412 - 414
  • [6] Strong-Earthquake-Prone Areas Recognition Based on an Algorithm with a Single Pure Training Class: I. Altai–Sayan–Baikal Region, М ≥ 6.0
    B. A. Dzeboev
    A. D. Gvishiani
    I. O. Belov
    S. M. Agayan
    V. N. Tatarinov
    Yu. V. Barykina
    Izvestiya, Physics of the Solid Earth, 2019, 55 : 563 - 575
  • [7] Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review
    A. D. Gvishiani
    A. A. Soloviev
    B. A. Dzeboev
    Izvestiya, Physics of the Solid Earth, 2020, 56 : 1 - 23
  • [8] Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review
    Gvishiani, A. D.
    Soloviev, A. A.
    Dzeboev, B. A.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2020, 56 (01) : 1 - 23
  • [9] Successive recognition of significant and strong earthquake-prone areas: The Baikal–Transbaikal region
    A. D. Gvishiani
    B. A. Dzeboev
    I. O. Belov
    N. A. Sergeeva
    E. V. Vavilin
    Doklady Earth Sciences, 2017, 477 : 1488 - 1493
  • [10] Successive Recognition of Significant and Strong Earthquake-Prone Areas: The Baikal-Transbaikal Region
    Gvishiani, A. D.
    Dzeboev, B. A.
    Belov, I. O.
    Sergeeva, N. A.
    Vavilin, E. V.
    DOKLADY EARTH SCIENCES, 2017, 477 (02) : 1488 - 1493