Spectroscopic diagnostics and electric field measurements in the near-cathode region of an atmospheric pressure microplasma jet

被引:0
|
作者
B. N. Sismanoglu
K. G. Grigorov
R. A. Santos
R. Caetano
M. V.O. Rezende
Y. D. Hoyer
V. W. Ribas
机构
[1] Instituto Tecnológico de Aeronáutica,Departamento de Física
[2] Institute of Electronics,undefined
[3] Bulgarian Academy of Science,undefined
[4] EMEF Carlos Chagas,undefined
[5] Av. Osvaldo Valle Cordeiro 337,undefined
[6] 03 584-000,undefined
来源
关键词
Optical Emission Spectroscopy; Cathode Surface; Electron Number Density; Excitation Temperature; Cathode Sheath;
D O I
暂无
中图分类号
学科分类号
摘要
Linear Stark splitting of the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{\beta}$\end{document} Balmer line components and spatially resolved optical emission spectroscopy (OES) measurements were used to estimate the electric field gradient in the cathode sheath region (~70 μm long) of an atmospheric pressure direct current argon flow-stabilized microplasma jet. Also, plasma parameters in the negative glow region were investigated by both OES and electrical diagnostics. The microplasma jet was operated for current ranging from 10 to 110 mA. OH (A 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm\Sigma}^+$\end{document}, v = 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\to$\end{document} X 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm\Pi}$\end{document}, v’ = 0) rotational bands at 306.357 nm and also the Ar 603.213 nm line were used to determine the gas temperature, which ranges from 600 to 1000 K. Electron number density, ranging from 4.1 × 1014 to 8.5 × 1014 cm-3, was determined through analysis of the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{\beta}$\end{document} line. Electron excitation temperature was also measured from the ratio of two Mo lines (8500–18 000 K) and from Boltzmann-plot of Ar 4p–4s and 5p–4s transitions (11 000–13 500 K).
引用
收藏
页码:479 / 487
页数:8
相关论文
共 50 条
  • [41] Electric field measurements in the cathode fall region of abnormal glow discharge in helium
    Kuraica, MM
    Konjevic, N
    Videnovic, IR
    Obradovic, BM
    18TH SPIG - 18TH SUMMER SCHOOL AND INTERNATIONAL SYMPOSIUM ON THE PHYSICS OF IONIZED GASES: CONTRIBUTED PAPERS & ABSTRACTS OF INVITED LECTURES AND PROGRESS REPORTS, 1996, : 383 - 386
  • [42] Correlation between reversion of signs of the electric field in the near-cathode plasma and anode fall potential in a short DC glow discharge
    E. I. Prokhorova
    A. A. Kudryavtsev
    A. A. Platonov
    A. G. Slyshov
    Technical Physics, 2017, 62 : 1122 - 1125
  • [43] Thermocouple and electric probe measurements in a cold atmospheric-pressure microwave plasma jet
    Chepelev, V. M.
    Chistolinov, A. V.
    Khromov, M. A.
    Antipov, S. N.
    Gadzhiev, M. Kh
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [44] Passive scalar flux measurements in the near-field region of a swirling jet
    Orlu, Ramis
    Alfredsson, P. Henrik
    HEAT TRANSFER RESEARCH, 2008, 39 (07) : 597 - 607
  • [45] Diagnostics of the Cathode-Drop Region of Glow Discharge at Atmospheric Pressure by the Helium and Hydrogen Line Profiles
    V. I. Arkhipenko
    S. M. Zgirovskii
    N. Konjevic
    M. M. Kuraica
    L. V. Simonchik
    Journal of Applied Spectroscopy, 2000, 67 (5) : 910 - 918
  • [46] Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field
    Frank-Kamenetsky, AV
    Troshichev, OA
    Burns, GB
    Papitashvili, VO
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A1) : 179 - 190
  • [47] Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme
    Mueller, Sarah
    Ito, Tsuyohito
    Kobayashi, Kazunobu
    Luggenhoelscher, Dirk
    Czarnetzki, Uwe
    Hamaguchi, Satoshi
    14TH INTERNATIONAL SYMPOSIUM ON LASER-AIDED PLASMA DIAGNOSTICS (LAPD14), 2010, 227
  • [48] Statistical analysis of the pressure field in the near region of a M=0.5 circular jet
    Camussi, Roberto
    Grizzi, Silvano
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2014, 13 (1-2) : 169 - 181
  • [49] Diagnostics of a nanosecond atmospheric plasma jet. Ionization waves, plasma density and electric field dynamics
    Britun, Nikolay
    Christy, Peter Raj Dennis
    Gamaleev, Vladislav
    Hsiao, Shih-Nan
    Hori, Masaru
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (18)
  • [50] Measurements of spatially resolved electron number densities and modes temperatures using optical emission spectroscopy of atmospheric pressure microplasma jet
    Y. D. Hoyer
    B. N. Sismanoglu
    K. G. Grigorov
    The European Physical Journal D, 2012, 66