Spectroscopic diagnostics and electric field measurements in the near-cathode region of an atmospheric pressure microplasma jet

被引:0
|
作者
B. N. Sismanoglu
K. G. Grigorov
R. A. Santos
R. Caetano
M. V.O. Rezende
Y. D. Hoyer
V. W. Ribas
机构
[1] Instituto Tecnológico de Aeronáutica,Departamento de Física
[2] Institute of Electronics,undefined
[3] Bulgarian Academy of Science,undefined
[4] EMEF Carlos Chagas,undefined
[5] Av. Osvaldo Valle Cordeiro 337,undefined
[6] 03 584-000,undefined
来源
关键词
Optical Emission Spectroscopy; Cathode Surface; Electron Number Density; Excitation Temperature; Cathode Sheath;
D O I
暂无
中图分类号
学科分类号
摘要
Linear Stark splitting of the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{\beta}$\end{document} Balmer line components and spatially resolved optical emission spectroscopy (OES) measurements were used to estimate the electric field gradient in the cathode sheath region (~70 μm long) of an atmospheric pressure direct current argon flow-stabilized microplasma jet. Also, plasma parameters in the negative glow region were investigated by both OES and electrical diagnostics. The microplasma jet was operated for current ranging from 10 to 110 mA. OH (A 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm\Sigma}^+$\end{document}, v = 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\to$\end{document} X 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm\Pi}$\end{document}, v’ = 0) rotational bands at 306.357 nm and also the Ar 603.213 nm line were used to determine the gas temperature, which ranges from 600 to 1000 K. Electron number density, ranging from 4.1 × 1014 to 8.5 × 1014 cm-3, was determined through analysis of the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_{\beta}$\end{document} line. Electron excitation temperature was also measured from the ratio of two Mo lines (8500–18 000 K) and from Boltzmann-plot of Ar 4p–4s and 5p–4s transitions (11 000–13 500 K).
引用
收藏
页码:479 / 487
页数:8
相关论文
共 50 条
  • [31] Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements
    Urabe, Keiichiro
    Morita, Tadasuke
    Tachibana, Kunihide
    Ganguly, Biswa N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (09)
  • [32] ELECTRIC PROBE DIAGNOSTICS OF DC ARC STREAM-ARGON PLASMA JET IN ATMOSPHERIC PRESSURE]
    Hurba, Oleksiy
    Hrabovsky, Milan
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [33] Correlation between Reversion of Signs of the Electric Field in the Near-Cathode Plasma and Anode Fall Potential in a Short DC Glow Discharge
    Prokhorova, E. I.
    Kudryavtsev, A. A.
    Platonov, A. A.
    Slyshov, A. G.
    TECHNICAL PHYSICS, 2017, 62 (07) : 1122 - 1125
  • [34] Characteristics of the Development of Electric Discharge between the Jet Electrolyte Cathode and the Metal Anode at Atmospheric Pressure
    Popov, A. I.
    Novikov, V. I.
    Radkevich, M. M.
    HIGH TEMPERATURE, 2019, 57 (04) : 447 - 457
  • [35] Characteristics of the Development of Electric Discharge between the Jet Electrolyte Cathode and the Metal Anode at Atmospheric Pressure
    A. I. Popov
    V. I. Novikov
    M. M. Radkevich
    High Temperature, 2019, 57 : 447 - 457
  • [36] Numerical investigation of atmospheric pressure plasma jet under nonuniform electric field
    Yu, Yutian
    Wu, Li
    Chen, Qiang
    Shinohara, Naoki
    Huang, Kama
    PHYSICAL REVIEW E, 2023, 108 (04)
  • [37] Electric field dynamics in an atmospheric pressure helium plasma jet impinging on a substrate
    Mirzaee, Mahsa
    Simeni, Marien Simeni
    Bruggeman, Peter J.
    PHYSICS OF PLASMAS, 2020, 27 (12)
  • [38] Effect of external electric and magnetic field on propagation of atmospheric pressure plasma jet
    Zhu, Ping
    Meng, Zhaozhong
    Hu, Haixin
    Ouyang, Jiting
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [39] Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet
    Sretenovic, Goran B.
    Guaitella, Olivier
    Sobota, Ana
    Krstic, Ivan B.
    Kovacevic, Vesna V.
    Obradovic, Bratislav M.
    Kuraica, Milorad M.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (12)
  • [40] Electric field measurements in a He:N2 atmospheric pressure RF plasma jet by E-FISH
    Orel, I
    Lepikhin, N. D.
    Luggenhoelscher, D.
    Czarnetzki, U.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2025, 34 (01):