Gravitational and Yang-Mills instantons in holographic RG flows

被引:0
|
作者
Edi Gava
Parinya Karndumri
K. S. Narain
机构
[1] INFN — Sezione di Trieste,
[2] International School for Advanced Studies (SISSA),undefined
[3] The Abdus Salam International Centre for Theoretical Physics,undefined
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
We study various holographic RG flow solutions involving warped asymptotically locally Euclidean (ALE) spaces of AN − 1 type. A two-dimensional RG flow from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six dimensional supergravity, interpolating between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_3} \times {S^3}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS3 × S3 geometries. We also find solutions involving non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces. Both flows are of vev type, driven by a vacuum expectation value of a marginal operator. RG flows in four dimensional field theories are studied in the type IIB and type I′ context. In type IIB theory, the flow interpolates between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS5 × S5 geometries. The field theory interpretation is that of an N = 2 SU(n)N quiver gauge theory flowing to N = 4 SU(n) gauge theory. In type I′ theory the solution describes an RG flow from N = 2 quiver gauge theory with a product gauge group to N = 2 gauge theory in the IR, with gauge group USp(n). The corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_2}}} \right.} $\end{document}, respectively. We also explore more general RG flows, in which both the UV and IR CFTs are N = 2 quiver gauge theories and the corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_M} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document}. Finally, we discuss the matching between the geometric and field theoretic pictures of the flows.
引用
收藏
相关论文
共 50 条
  • [41] Explicit construction of Yang-Mills instantons on ALE spaces
    Bianchi, M
    Fucito, F
    Rossi, G
    Martellini, M
    NUCLEAR PHYSICS B, 1996, 473 (1-2) : 367 - 404
  • [42] TOPOLOGY OF EUCLIDEAN YANG-MILLS FIELDS - INSTANTONS AND MONOPOLES
    YONEYA, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) : 1759 - 1762
  • [43] Spin(7)-manifolds and symmetric Yang-Mills instantons
    Etesi, G
    PHYSICS LETTERS B, 2001, 521 (3-4) : 391 - 399
  • [44] Modified Levy Laplacian on manifold and Yang-Mills instantons
    Volkov, B. O.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (20-21):
  • [45] Instantons in supersymmetric Yang-Mills and d-instantons in IIB superstring theory
    Bianchi, M
    Kovacs, S
    Rossi, G
    Green, MB
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (08):
  • [46] Notes on theta dependence in holographic Yang-Mills
    Bigazzi, Francesco
    Cotrone, Aldo L.
    Sisca, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08): : 1 - 31
  • [47] Notes on theta dependence in holographic Yang-Mills
    Francesco Bigazzi
    Aldo L. Cotrone
    Roberto Sisca
    Journal of High Energy Physics, 2015
  • [48] Effect of gravitational waves on Yang-Mills condensates
    Gosala, Narasimha Reddy
    Dasgupta, Arundhati
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (06)
  • [49] HARMONIC CURVATURE FOR GRAVITATIONAL AND YANG-MILLS FIELDS
    BOURGUIGNON, JP
    LECTURE NOTES IN MATHEMATICS, 1982, 949 : 35 - 47
  • [50] Holographic RG flows for gravitational couplings
    Rachwal, Leslaw
    Percacci, Roberto
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2014, 62 (9-10): : 887 - 891