Gravitational and Yang-Mills instantons in holographic RG flows

被引:0
|
作者
Edi Gava
Parinya Karndumri
K. S. Narain
机构
[1] INFN — Sezione di Trieste,
[2] International School for Advanced Studies (SISSA),undefined
[3] The Abdus Salam International Centre for Theoretical Physics,undefined
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
We study various holographic RG flow solutions involving warped asymptotically locally Euclidean (ALE) spaces of AN − 1 type. A two-dimensional RG flow from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six dimensional supergravity, interpolating between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_3} \times {S^3}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS3 × S3 geometries. We also find solutions involving non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces. Both flows are of vev type, driven by a vacuum expectation value of a marginal operator. RG flows in four dimensional field theories are studied in the type IIB and type I′ context. In type IIB theory, the flow interpolates between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_N}}} \right.} $\end{document} and AdS5 × S5 geometries. The field theory interpretation is that of an N = 2 SU(n)N quiver gauge theory flowing to N = 4 SU(n) gauge theory. In type I′ theory the solution describes an RG flow from N = 2 quiver gauge theory with a product gauge group to N = 2 gauge theory in the IR, with gauge group USp(n). The corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{{\mathbb{Z}_2}}} \right.} $\end{document}, respectively. We also explore more general RG flows, in which both the UV and IR CFTs are N = 2 quiver gauge theories and the corresponding geometries are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_N} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{Ad{S_5} \times {S^5}}} \left/ {{\left( {{\mathbb{Z}_M} \times {\mathbb{Z}_2}} \right)}} \right.} $\end{document}. Finally, we discuss the matching between the geometric and field theoretic pictures of the flows.
引用
收藏
相关论文
共 50 条
  • [31] On Yang–Mills Instantons over Multi-Centered Gravitational Instantons
    Gábor Etesi
    Tamás Hausel
    Communications in Mathematical Physics, 2003, 235 : 275 - 288
  • [32] Yang-Mills gravity and gravitational radiation
    Hsu, Jong-Ping
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (172): : 169 - 173
  • [33] Yang-Mills theory for semidirect products and its instantons
    Ruiz Ruiz, F.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (07):
  • [34] Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves
    Figueroa-O'Farrill, JM
    Kohl, C
    Spence, B
    NUCLEAR PHYSICS B, 1998, 521 (03) : 419 - 443
  • [35] YANG-MILLS INSTANTONS IN SELF-DUAL SPACETIMES
    YUILLE, AL
    PHYSICS LETTERS B, 1979, 81 (3-4) : 321 - 324
  • [36] On the reduction of Yang-Mills instantons to Nahm's equations
    Kovalev, AG
    RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) : 1305 - 1306
  • [37] Yang-Mills like instantons in eight and seven dimensions
    Loginov, E. K.
    Loginova, E. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [38] SEMICLASSICAL YANG-MILLS THEORY-I - INSTANTONS
    GROISSER, D
    PARKER, TH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) : 101 - 140
  • [39] Yang-Mills instantons as the endpoint of black hole evaporation
    Chen, Pisin
    Chew, Xiao Yan
    Sasaki, Misao
    Yeom, Dong-han
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [40] Linear Dynamical Systems and Instantons in Yang-Mills Theory
    Helmke, U.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (2-3) : 151 - 166