Analysis of a temperature-dependent model for water-borne disease transmission dynamics

被引:0
|
作者
Omprakash Singh Sisodiya
O. P. Misra
Joydip Dhar
机构
[1] ITM University,School of Sciences
[2] Jiwaji University,School of Mathematics and Allied Sciences
[3] ABV-Indian Institute of Information Technology and Management,Department of Applied Sciences
来源
International Journal of Dynamics and Control | 2023年 / 11卷
关键词
Water-borne disease; Time-dependent reproduction number; Pathogen-control; Periodic steady state;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that water-borne diseases occur seasonally and are strongly associated with the temperature. In this paper, a non-autonomous mathematical model for water-borne disease is proposed and analyzed. Three temperature-dependent parameters are included in the proposed model, related to the growth rate and death rate of pathogen in aquatic environment, and disease transmission rate from pathogen to human. In this paper, a threshold condition in terms of RC(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_C(t)$$\end{document} is obtained to account for the extinction or the persistence of the disease. The impact of temperature variability on the spread of disease over the study region is also shown from the analysis of the temperature-dependent threshold RC(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_C(t)$$\end{document}. It is also shown that the proposed non-autonomous system has a non-trivial disease-free periodic state which is globally asymptotically stable whenever RC(t)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_C(t) < 1$$\end{document}. The autonomous version of the proposed model is also analyzed. Results show that the autonomous system is locally and globally asymptotically stable for the disease-free state. The endemic equilibrium of the autonomous model in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document} is also derived, and it is shown that the endemic solution for the autonomous system is globally asymptotically stable. Numerical simulation has been carried out to illustrate our theoretical results and also predict the effectiveness of the control strategies.
引用
收藏
页码:2112 / 2126
页数:14
相关论文
共 50 条
  • [31] INSTABILITY OF FLOW WITH TEMPERATURE-DEPENDENT VISCOSITY - A MODEL OF MAGMA DYNAMICS
    WHITEHEAD, JA
    HELFRICH, KR
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B3): : 4145 - 4155
  • [32] Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics
    Okuneye, Kamaldeen
    Gumel, Abba B.
    MATHEMATICAL BIOSCIENCES, 2017, 287 : 72 - 92
  • [33] Adaptive hierarchical grid model of water-borne pollutant dispersion
    Borthwick, AGL
    Marchant, RD
    Copeland, GJM
    ADVANCES IN WATER RESOURCES, 2000, 23 (08) : 849 - 865
  • [34] Formation dynamics of an entangled photon pair: A temperature-dependent analysis
    Carmele, Alexander
    Milde, Frank
    Dachner, Matthias-Rene
    Harouni, Malek Bagheri
    Roknizadeh, Rasoul
    Richter, Marten
    Knorr, Andreas
    PHYSICAL REVIEW B, 2010, 81 (19):
  • [35] Temperature-dependent dynamics of water in aqueous NaPF6 solution
    Nam, Dayoung
    Lee, Chiho
    Park, Sungnam
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (39) : 21747 - 21754
  • [36] Analysis of a temperature-dependent model for adhesive contact with friction
    Bonetti, Elena
    Bonfanti, Giovanna
    Rossi, Riccarda
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 285 : 42 - 62
  • [37] Temperature-dependent lattice dynamics in iridium
    Moseley, Duncan H.
    Thebaud, Simon J.
    Lindsay, Lucas R.
    Cheng, Yongqiang
    Abernathy, Douglas L.
    Manley, Michael E.
    Hermann, Raphael P.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (11):
  • [38] Analysis of Signal Transmission with Temperature-Dependent Electrical Parameters Using FDTD
    Men Xiuhua
    Li Shunming
    Zuo Zemin
    2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, VOLS 1 AND 2, PROCEEDINGS, 2008, : 506 - 510
  • [39] Temperature-dependent stochastic dynamics of the Huber-Braun neuron model
    Finke, Christian
    Freund, Jan A.
    Rosa, Epaminondas, Jr.
    Bryant, Paul H.
    Braun, Hans A.
    Feudel, Ulrike
    CHAOS, 2011, 21 (04)
  • [40] Temperature-dependent erosivity of drinks in a model simulating oral fluid dynamics
    Steiger-Ronay, Valerie
    Steingruber, Andrea
    Becker, Klaus
    Aykut-Yetkiner, Arzu
    Wiedemeier, Daniel B.
    Attin, Thomas
    JOURNAL OF DENTISTRY, 2018, 70 : 118 - 123