Analysis of a temperature-dependent model for water-borne disease transmission dynamics

被引:0
|
作者
Omprakash Singh Sisodiya
O. P. Misra
Joydip Dhar
机构
[1] ITM University,School of Sciences
[2] Jiwaji University,School of Mathematics and Allied Sciences
[3] ABV-Indian Institute of Information Technology and Management,Department of Applied Sciences
来源
International Journal of Dynamics and Control | 2023年 / 11卷
关键词
Water-borne disease; Time-dependent reproduction number; Pathogen-control; Periodic steady state;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that water-borne diseases occur seasonally and are strongly associated with the temperature. In this paper, a non-autonomous mathematical model for water-borne disease is proposed and analyzed. Three temperature-dependent parameters are included in the proposed model, related to the growth rate and death rate of pathogen in aquatic environment, and disease transmission rate from pathogen to human. In this paper, a threshold condition in terms of RC(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_C(t)$$\end{document} is obtained to account for the extinction or the persistence of the disease. The impact of temperature variability on the spread of disease over the study region is also shown from the analysis of the temperature-dependent threshold RC(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_C(t)$$\end{document}. It is also shown that the proposed non-autonomous system has a non-trivial disease-free periodic state which is globally asymptotically stable whenever RC(t)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_C(t) < 1$$\end{document}. The autonomous version of the proposed model is also analyzed. Results show that the autonomous system is locally and globally asymptotically stable for the disease-free state. The endemic equilibrium of the autonomous model in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document} is also derived, and it is shown that the endemic solution for the autonomous system is globally asymptotically stable. Numerical simulation has been carried out to illustrate our theoretical results and also predict the effectiveness of the control strategies.
引用
收藏
页码:2112 / 2126
页数:14
相关论文
共 50 条
  • [21] Epidemic West Nile virus encephalomyelitis: A temperature-dependent, spatial model of disease dynamics
    Ward, MP
    PREVENTIVE VETERINARY MEDICINE, 2005, 71 (3-4) : 253 - 264
  • [22] Temperature-dependent dynamics of confinement
    Jha, RK
    Malik, GP
    Varma, VS
    ASTROPHYSICS AND SPACE SCIENCE, 1997, 249 (01) : 151 - 159
  • [23] Temperature-Dependent Dynamics of Confinement
    Raman Kumar Jha
    G.P. Malik
    Vijaya S. Varma
    Astrophysics and Space Science, 1997, 249 (1) : 151 - 159
  • [24] Water-borne, low-temperature curable polyacrylate coatings
    Jing, Lv
    Min, Xiao
    Yuan, Chen
    Shuilin, Chen
    International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53 (10) : 915 - 925
  • [25] WATER-BORNE TRANSMISSION OF CHLORAMPHENICOL-RESISTANT SALMONELLA-TYPHI
    CORTES, AG
    BESSUDO, D
    LEYBA, RS
    FRAGOSO, R
    HINOJOSA, M
    BECERRIL, P
    BOLETIN DE LA OFICINA SANITARIA PANAMERICANA, 1974, 77 (05): : 375 - 381
  • [26] Genetic analysis of temperature-dependent transmission of mitochondrial DNA in Drosophila
    Asako Doi
    Hiromi Suzuki
    Etsuko T Matsuura
    Heredity, 1999, 82 : 555 - 560
  • [27] Genetic analysis of temperature-dependent transmission of mitochondrial DNA in Drosophila
    Doi, A
    Suzuki, H
    Matsuura, ET
    HEREDITY, 1999, 82 (5) : 555 - 560
  • [28] Modeling the transmission phenomena of water-borne disease with non-singular and non-local kernel
    Deebani, Wejdan
    Jan, Rashid
    Shah, Zahir
    Vrinceanu, Narcisa
    Racheriu, Mihaela
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2023, 26 (11) : 1294 - 1307
  • [29] Risks of water-borne disease outbreaks after extreme events
    Marcheggiani S.
    Puccinelli C.
    Ciadamidaro S.
    Bella V.D.
    Carere M.
    Blasi M.F.
    Pacini N.
    Funari E.
    Mancini L.
    Toxicological and Environmental Chemistry, 2010, 92 (03): : 593 - 599
  • [30] DYNAMICS OF A PERIODIC BLUETONGUE MODEL WITH A TEMPERATURE-DEPENDENT INCUBATION PERIOD
    Li, Fuxiang
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (06) : 2479 - 2505