Estimating disease prevalence in large datasets using genetic risk scores

被引:0
|
作者
Benjamin D. Evans
Piotr Słowiński
Andrew T. Hattersley
Samuel E. Jones
Seth Sharp
Robert A. Kimmitt
Michael N. Weedon
Richard A. Oram
Krasimira Tsaneva-Atanasova
Nicholas J. Thomas
机构
[1] University of Exeter,Department of Mathematics
[2] University of Exeter,Living Systems Institute, Centre for Biomedical Modelling and Analysis
[3] University of Bristol,School of Psychological Science
[4] University of Exeter,Living Systems Institute, Translational Research Exchange @ Exeter
[5] University of Exeter Medical School,undefined
[6] Institute of Biomedical & Clinical Science,undefined
[7] Royal Devon & Exeter NHS Foundation Trust,undefined
[8] Living Systems Institute,undefined
[9] EPSRC Hub for Quantitative Modelling in Healthcare,undefined
[10] University of Exeter,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Clinical classification is essential for estimating disease prevalence but is difficult, often requiring complex investigations. The widespread availability of population level genetic data makes novel genetic stratification techniques a highly attractive alternative. We propose a generalizable mathematical framework for determining disease prevalence within a cohort using genetic risk scores. We compare and evaluate methods based on the means of genetic risk scores’ distributions; the Earth Mover’s Distance between distributions; a linear combination of kernel density estimates of distributions; and an Excess method. We demonstrate the performance of genetic stratification to produce robust prevalence estimates. Specifically, we show that robust estimates of prevalence are still possible even with rarer diseases, smaller cohort sizes and less discriminative genetic risk scores, highlighting the general utility of these approaches. Genetic stratification techniques offer exciting new research tools, enabling unbiased insights into disease prevalence and clinical characteristics unhampered by clinical classification criteria.
引用
收藏
相关论文
共 50 条
  • [41] Estimating the prevalence of type 1 and type 2 diabetes in British Bangladeshis and Pakistanis with an ambiguous diabetes phenotype using polygenic risk scores
    Paterson, G. G.
    Liu, T.
    Sankareswaran, A.
    Chandak, G. R.
    Thomas, N. J.
    Weedon, M. N.
    Yajnik, C. S.
    Oram, R.
    Martin, H.
    Finer, S.
    DIABETIC MEDICINE, 2023, 40
  • [42] Estimating Disease Prevalence Using Relatives of Case and Control Probands
    Javaras, Kristin N.
    Laird, Nan M.
    Hudson, James I.
    Ripley, Brian D.
    BIOMETRICS, 2010, 66 (01) : 214 - 221
  • [43] Estimating Disease Prevalence Using Inverse Binomial Pooled Testing
    Pritchard, Nicholas A.
    Tebbs, Joshua M.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (01) : 70 - 87
  • [44] PREDICTION OF CORONARY ARTERY DISEASE AND MAJOR ADVERSE CARDIOVASCULAR EVENTS USING CLINICAL AND GENETIC RISK SCORES FOR CARDIOVASCULAR RISK FACTORS
    Ramirez, J.
    Van Duijvenboden, S.
    Young, W.
    Tinker, A.
    Lambiase, P.
    Orini, M.
    Munroe, P.
    ATHEROSCLEROSIS, 2022, 355 : E3 - E3
  • [45] Using repeaters for estimating comparable scores
    Liou, M
    Cheng, PE
    Wu, CJ
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1999, 52 : 273 - 284
  • [46] Estimating responsiveness scores using rscore
    Cerulli, Giovanni
    STATA JOURNAL, 2017, 17 (02): : 422 - 441
  • [47] Estimating Disease Prevalence Using Inverse Binomial Pooled Testing
    Nicholas A. Pritchard
    Joshua M. Tebbs
    Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 70 - 87
  • [48] Implementation of polygenic risk scores from sequencing data towards practice by utilizing large publicly available datasets
    Rojo, Alejandro Correa
    Valkenborg, Dirk
    Ertaylan, Gokhan
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 682 - 682
  • [49] Estimating disease prevalence in a Bayesian framework using probabilistic constraints
    Berkvens, D
    Speybroeck, N
    Praet, N
    Adel, A
    Lesaffre, E
    EPIDEMIOLOGY, 2006, 17 (02) : 145 - 153
  • [50] Prediction of Coronary Artery Disease and Major Adverse Cardiovascular Events Using Clinical and Genetic Risk Scores for Cardiovascular Risk Factors
    Ramirez, Julia
    van Duijvenboden, Stefan
    Young, William J.
    Tinker, Andrew
    Lambiase, Pier D.
    Orini, Michele
    Munroe, Patricia B.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2022, 15 (05): : 444 - 452