Estimating disease prevalence in large datasets using genetic risk scores

被引:0
|
作者
Benjamin D. Evans
Piotr Słowiński
Andrew T. Hattersley
Samuel E. Jones
Seth Sharp
Robert A. Kimmitt
Michael N. Weedon
Richard A. Oram
Krasimira Tsaneva-Atanasova
Nicholas J. Thomas
机构
[1] University of Exeter,Department of Mathematics
[2] University of Exeter,Living Systems Institute, Centre for Biomedical Modelling and Analysis
[3] University of Bristol,School of Psychological Science
[4] University of Exeter,Living Systems Institute, Translational Research Exchange @ Exeter
[5] University of Exeter Medical School,undefined
[6] Institute of Biomedical & Clinical Science,undefined
[7] Royal Devon & Exeter NHS Foundation Trust,undefined
[8] Living Systems Institute,undefined
[9] EPSRC Hub for Quantitative Modelling in Healthcare,undefined
[10] University of Exeter,undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Clinical classification is essential for estimating disease prevalence but is difficult, often requiring complex investigations. The widespread availability of population level genetic data makes novel genetic stratification techniques a highly attractive alternative. We propose a generalizable mathematical framework for determining disease prevalence within a cohort using genetic risk scores. We compare and evaluate methods based on the means of genetic risk scores’ distributions; the Earth Mover’s Distance between distributions; a linear combination of kernel density estimates of distributions; and an Excess method. We demonstrate the performance of genetic stratification to produce robust prevalence estimates. Specifically, we show that robust estimates of prevalence are still possible even with rarer diseases, smaller cohort sizes and less discriminative genetic risk scores, highlighting the general utility of these approaches. Genetic stratification techniques offer exciting new research tools, enabling unbiased insights into disease prevalence and clinical characteristics unhampered by clinical classification criteria.
引用
收藏
相关论文
共 50 条
  • [21] Genetic risk scores and hallucinations in Parkinson's disease patients
    Kusters, C.
    Paul, K.
    Duarte Folle, A.
    Keener, A.
    Bronstein, J.
    Dobricic, V.
    Tysnes, O. -B.
    Bertram, L.
    Alves, G.
    Sinsheimer, J.
    Lill, C.
    Maple-Grodem, J.
    Ritz, B.
    MOVEMENT DISORDERS, 2020, 35 : S203 - S203
  • [22] Multilocus Genetic Risk Scores for Coronary Heart Disease Prediction
    Ganna, Andrea
    Magnusson, Patrik K. E.
    Pedersen, Nancy L.
    de Faire, Ulf
    Reilly, Marie
    Arnloe, Johan
    Sundstrom, Johan
    Hamsten, Anders
    Ingelsson, Erik
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2013, 33 (09) : 2267 - 2272
  • [23] Genetic Risk Scores and Hallucinations in Parkinson's Disease Patients
    Kusters, Cynthia
    Paul, Kimberly
    Folle, Aline Duarte
    Keener, Adrienne
    Bronstein, Jeff
    Dobricic, Valerija D.
    Tysnes, Ole-bjorn
    Bertram, Lars
    Alves, Guido
    Sinsheimer, Janet
    Lill, Christina
    Maple-Grodem, Jodi
    Ritz, Beate
    ANNALS OF NEUROLOGY, 2020, 88 : S192 - S193
  • [24] Prevalence of scleroderma in Spain: an approach for estimating rare disease prevalence using a disease model
    Villaverde-Hueso, A.
    de la Paz, M. Posada
    Martin-Arribas, M. C.
    Sanchez-Valle, E.
    Ramirez-Gonzalez, A.
    Biairdi, P.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2008, 17 (11) : 1100 - 1107
  • [25] Estimating the Prevalence of GNE Myopathy Using Population Genetic Databases
    Derksen, Alexa
    Thompson, Rachel
    Shaikh, Madeeha
    Spendiff, Sally
    Perkins, Theodore J.
    Lochmuller, Hanns
    HUMAN MUTATION, 2024, 2024
  • [26] Estimating the prevalence of schizophrenia in Spain using a disease model
    Ayuso-Mateos, J. L.
    Gutierrez-Recacha, P.
    Haro, J. M.
    Chisholm, D.
    SCHIZOPHRENIA RESEARCH, 2006, 86 (1-3) : 194 - 201
  • [27] Estimating prevalence of rare genetic disease diagnoses using electronic health records in a children's hospital
    Herr, Kate
    Lu, Peixin
    Diamreyan, Kessi
    Xu, Huan
    Mendonca, Eneida
    Weaver, K. Nicole
    Chen, Jing
    HUMAN GENETICS AND GENOMICS ADVANCES, 2024, 5 (04):
  • [29] AGORAS: A Fast Algorithm for Estimating Medoids in Large Datasets
    Rangel, Esteban M.
    Hendrix, William
    Agrawal, Ankit
    Liao, Wei-keng
    Choudhary, Alok
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1159 - 1169
  • [30] Revealing polygenic pleiotropy using genetic risk scores for asthma
    Dapas, Matthew
    Lee, Yu Lin
    Wentworth-Sheilds, William
    Im, Hae Kyung
    Ober, Carole
    Schoettler, Nathan
    HUMAN GENETICS AND GENOMICS ADVANCES, 2023, 4 (04):