Hausdorff measure of noncompactness of matrix operators on some new difference sequence spaces

被引:0
|
作者
Elahe Abyar
Mohammad Bagher Ghaemi
机构
[1] Islamic Azad University,
来源
Journal of Inequalities and Applications | / 2016卷
关键词
sequence space; difference operators; matrix transformation; generalized means; compact operators; Hausdorff measure of noncompactness;
D O I
暂无
中图分类号
学科分类号
摘要
The new sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta)$\end{document} for X∈{l∞,c,c0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0}\}$\end{document} have been defined by using generalized means and difference operator. In this work, we establish identities or estimates for the operator norms and the Hausdorff measure of noncompactness of certain matrix operators on some new difference sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta )$\end{document} where X∈{l∞,c,c0,lp}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0},l_{p}\}$\end{document} (1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq{p}<\infty$\end{document}), as derived by using generalized means. Further, we find the necessary and sufficient conditions for such operators to be compact by applying the Hausdorff measure of noncompactness. Finally, as applications we characterize some classes of compact operators between these new difference sequence spaces and some other BK-spaces.
引用
收藏
相关论文
共 50 条
  • [41] On some classes of compact and matrix operators on the generalized weighted mean difference sequence spaces of fractional order
    Samantaray, S.
    Nayak, L.
    Padhy, B. P.
    JOURNAL OF ANALYSIS, 2022, 30 (02): : 483 - 500
  • [42] THE NORMS AND THE LOWER BOUNDS FOR MATRIX OPERATORS ON WEIGHTED DIFFERENCE SEQUENCE SPACES
    Foroutannia, Davoud
    Roopaei, Hadi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (02): : 151 - 160
  • [43] On some classes of compact and matrix operators on the generalized weighted mean difference sequence spaces of fractional order
    S. Samantaray
    L. Nayak
    B. P. Padhy
    The Journal of Analysis, 2022, 30 : 483 - 500
  • [44] On the measure of noncompactness of linear operators in spaces of strongly α-summable and bounded sequences
    Bruno de Malafosse
    Eberhard Malkowsky
    Periodica Mathematica Hungarica, 2007, 55 : 129 - 148
  • [45] ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES
    De Malafosse, Bruno
    Malkowsky, Eberhard
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 129 - 148
  • [46] Some New Paranormed Sequence Spaces Derived by q-Second Difference Matrix
    Ellidokuzoglu, H. Bilgin
    Demiriz, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (09)
  • [47] On compact operators and some Euler B(m)-difference sequence spaces
    Kara, Emrah Evren
    Basarir, Metin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 499 - 511
  • [48] Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order
    Yaying, Taja
    Hazarika, Bipan
    Et, Mikail
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1443 - 1460
  • [49] DIFFERENCE OPERATORS ON WEIGHTED SEQUENCE SPACES
    Chib, Sushma
    Komal, B. S.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 5 (04): : 26 - 31
  • [50] Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order
    Taja Yaying
    Bipan Hazarika
    Mikail Et
    The Journal of Analysis, 2021, 29 : 1443 - 1460