Hausdorff measure of noncompactness of matrix operators on some new difference sequence spaces

被引:0
|
作者
Elahe Abyar
Mohammad Bagher Ghaemi
机构
[1] Islamic Azad University,
来源
Journal of Inequalities and Applications | / 2016卷
关键词
sequence space; difference operators; matrix transformation; generalized means; compact operators; Hausdorff measure of noncompactness;
D O I
暂无
中图分类号
学科分类号
摘要
The new sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta)$\end{document} for X∈{l∞,c,c0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0}\}$\end{document} have been defined by using generalized means and difference operator. In this work, we establish identities or estimates for the operator norms and the Hausdorff measure of noncompactness of certain matrix operators on some new difference sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta )$\end{document} where X∈{l∞,c,c0,lp}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0},l_{p}\}$\end{document} (1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq{p}<\infty$\end{document}), as derived by using generalized means. Further, we find the necessary and sufficient conditions for such operators to be compact by applying the Hausdorff measure of noncompactness. Finally, as applications we characterize some classes of compact operators between these new difference sequence spaces and some other BK-spaces.
引用
收藏
相关论文
共 50 条
  • [31] Some new sequence spaces derived by the domain of generalized difference matrix
    Kirisci, Murat
    Basar, Feyzi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1299 - 1309
  • [32] Compact operators on some Fibonacci difference sequence spaces
    Abdullah Alotaibi
    Mohammad Mursaleen
    Badriah AS Alamri
    Syed Abdul Mohiuddine
    Journal of Inequalities and Applications, 2015
  • [33] Compact operators on some Fibonacci difference sequence spaces
    Alotaibi, Abdullah
    Mursaleen, Mohammad
    Alamri, Badriah A. S.
    Mohiuddine, Syed Abdul
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [34] Some new difference sequence spaces
    Aydin, C
    Basar, F
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (03) : 677 - 693
  • [35] RETRACTED: The Hausdorff measure of noncompactness for some matrix operators (Retracted article. See vol. 117, pg. 221, 2015)
    Mohiuddine, S. A.
    Mursaleen, M.
    Alotaibi, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 119 - 129
  • [36] ISOMETRIC RESULTS ON A MEASURE OF NONCOMPACTNESS FOR OPERATORS ON BANACH-SPACES
    DILWORTH, SJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (01) : 27 - 33
  • [37] Matrix dilation and Hausdorff operators on modulation spaces
    Guo, Weichao
    Luo, Jiangkun
    Zhao, Guoping
    Guo, Weichao
    Luo, Jiangkun
    Zhao, Guoping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7874 - 7896
  • [38] ON SOME DIFFERENCE SEQUENCE SPACES OF WEIGHTED MEANS AND COMPACT OPERATORS
    Basarir, Metin
    Kara, Emrah Evren
    ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (02): : 114 - 129
  • [39] On some new generalized difference sequence spaces
    Et M.
    Basarir M.
    Periodica Mathematica Hungarica, 1997, 35 (3) : 169 - 175