Hausdorff measure of noncompactness of matrix operators on some new difference sequence spaces

被引:0
|
作者
Elahe Abyar
Mohammad Bagher Ghaemi
机构
[1] Islamic Azad University,
来源
Journal of Inequalities and Applications | / 2016卷
关键词
sequence space; difference operators; matrix transformation; generalized means; compact operators; Hausdorff measure of noncompactness;
D O I
暂无
中图分类号
学科分类号
摘要
The new sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta)$\end{document} for X∈{l∞,c,c0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0}\}$\end{document} have been defined by using generalized means and difference operator. In this work, we establish identities or estimates for the operator norms and the Hausdorff measure of noncompactness of certain matrix operators on some new difference sequence spaces X(r,s,t;Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X(r,s,t;\Delta )$\end{document} where X∈{l∞,c,c0,lp}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in\{l_{\infty}, c, c_{0},l_{p}\}$\end{document} (1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq{p}<\infty$\end{document}), as derived by using generalized means. Further, we find the necessary and sufficient conditions for such operators to be compact by applying the Hausdorff measure of noncompactness. Finally, as applications we characterize some classes of compact operators between these new difference sequence spaces and some other BK-spaces.
引用
收藏
相关论文
共 50 条