Completeness in Equational Hybrid Propositional Type Theory

被引:0
|
作者
Maria Manzano
Manuel Martins
Antonia Huertas
机构
[1] University of Salamanca,Department of Philosophy
[2] Universidade de Aveiro,CIDMA, Department of Mathematics
[3] Universitat Oberta de Catalunya,Department of Computer Science
来源
Studia Logica | 2019年 / 107卷
关键词
Propositional type theory; Hybrid logic; Equational logic; Completeness;
D O I
暂无
中图分类号
学科分类号
摘要
Equational hybrid propositional type theory (EHPTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {EHPTT}$$\end{document}) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory, (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document}-saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {EHPTT}$$\end{document}. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.
引用
收藏
页码:1159 / 1198
页数:39
相关论文
共 50 条