Completeness in Equational Hybrid Propositional Type Theory

被引:0
|
作者
Maria Manzano
Manuel Martins
Antonia Huertas
机构
[1] University of Salamanca,Department of Philosophy
[2] Universidade de Aveiro,CIDMA, Department of Mathematics
[3] Universitat Oberta de Catalunya,Department of Computer Science
来源
Studia Logica | 2019年 / 107卷
关键词
Propositional type theory; Hybrid logic; Equational logic; Completeness;
D O I
暂无
中图分类号
学科分类号
摘要
Equational hybrid propositional type theory (EHPTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {EHPTT}$$\end{document}) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory, (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document}-saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {EHPTT}$$\end{document}. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.
引用
收藏
页码:1159 / 1198
页数:39
相关论文
共 50 条
  • [1] Completeness in Equational Hybrid Propositional Type Theory
    Manzano, Maria
    Martins, Manuel
    Huertas, Antonia
    STUDIA LOGICA, 2019, 107 (06) : 1159 - 1198
  • [2] Completeness in Hybrid Type Theory
    Areces, Carlos
    Blackburn, Patrick
    Huertas, Antonia
    Manzano, Maria
    JOURNAL OF PHILOSOPHICAL LOGIC, 2014, 43 (2-3) : 209 - 238
  • [3] Completeness in Hybrid Type Theory
    Carlos Areces
    Patrick Blackburn
    Antonia Huertas
    María Manzano
    Journal of Philosophical Logic, 2014, 43 : 209 - 238
  • [4] Completeness Theory for Propositional Logics
    Polacik, Tomasz
    STUDIA LOGICA, 2010, 95 (03) : 443 - 446
  • [5] EQUATIONAL PROPOSITIONAL LOGIC
    GRIES, D
    SCHNEIDER, FB
    INFORMATION PROCESSING LETTERS, 1995, 53 (03) : 145 - 152
  • [6] ON EQUATIONAL COMPLETENESS THEOREMS
    Moraschini, Tommaso
    JOURNAL OF SYMBOLIC LOGIC, 2022, 87 (04) : 1522 - 1575
  • [7] EQUATIONAL COMPLETENESS OF ABSTRACT ALGEBRAS
    KALICKI, J
    SCOTT, DS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (06) : 626 - 626
  • [9] Propositional Type Theory of Indeterminacy
    Aranda, Victor
    Martins, Manuel
    Manzano, Maria
    STUDIA LOGICA, 2024, 112 (06) : 1409 - 1438
  • [10] On the soundness and completeness of equational predicate logics
    Tourlakis, G
    JOURNAL OF LOGIC AND COMPUTATION, 2001, 11 (04) : 623 - 653