共 50 条
Completeness in Equational Hybrid Propositional Type Theory
被引:0
|作者:
Maria Manzano
Manuel Martins
Antonia Huertas
机构:
[1] University of Salamanca,Department of Philosophy
[2] Universidade de Aveiro,CIDMA, Department of Mathematics
[3] Universitat Oberta de Catalunya,Department of Computer Science
来源:
关键词:
Propositional type theory;
Hybrid logic;
Equational logic;
Completeness;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Equational hybrid propositional type theory (EHPTT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf {EHPTT}$$\end{document}) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory, (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ◊\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Diamond $$\end{document}-saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf {EHPTT}$$\end{document}. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.
引用
收藏
页码:1159 / 1198
页数:39
相关论文