Sum-Free Sets and Related Sets

被引:0
|
作者
Yuri Bilu
机构
[1] Instituto de Matemática Pura e Aplicada,
[2] Estrada Dona Castorina; 110,undefined
[3] Jardim Botanico 22.460-320,undefined
[4] Rio de Janeiro,undefined
[5] RJ BRAZIL; Current address: Mathematisches Institut,undefined
[6] Universität Basel; Rheinsprung 21,undefined
[7] CH-4051 Basel,undefined
[8] Switzerland; E-mail: yuri@math.unibas.ch,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  11B75, 11B25, 11P99, 11D04;
D O I
暂无
中图分类号
学科分类号
摘要
of integers is sum-free if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Cameron conjectured that the number of sum-free sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. As a step towards this conjecture, we prove that the number of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:449 / 459
页数:10
相关论文
共 50 条
  • [41] Beyond sum-free sets in the natural numbers
    Huczynska, Sophie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [42] Bounds on the number of maximal sum-free sets
    Wolfovitz, Guy
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) : 1718 - 1723
  • [43] DIFFERENCE SETS AND SUM-FREE SETS IN GROUPS OF ORDER-16
    WHITEHEAD, EG
    DISCRETE MATHEMATICS, 1975, 13 (04) : 399 - 407
  • [44] Groups with few maximal sum-free sets
    Liu, Hong
    Sharifzadeh, Maryam
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 177
  • [45] Regular saturated graphs and sum-free sets
    Timmons, Craig
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [46] Sharp estimates for the number of sum-free sets
    Lev, VF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 555 : 1 - 25
  • [47] On Maximal Sum-Free Sets in Abelian Groups
    Hassler, Nathanael
    Treglown, Andrew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02): : 1 - 24
  • [48] Counting sum-free sets in abelian groups
    Alon, Noga
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 309 - 344
  • [49] A note on the largest sum-free sets of integers
    Jing, Yifan
    Wu, Shukun
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [50] Large sum-free sets in Z/pZ
    Lev, Vsevolod F.
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) : 221 - 233