Sum-Free Sets and Related Sets

被引:0
|
作者
Yuri Bilu
机构
[1] Instituto de Matemática Pura e Aplicada,
[2] Estrada Dona Castorina; 110,undefined
[3] Jardim Botanico 22.460-320,undefined
[4] Rio de Janeiro,undefined
[5] RJ BRAZIL; Current address: Mathematisches Institut,undefined
[6] Universität Basel; Rheinsprung 21,undefined
[7] CH-4051 Basel,undefined
[8] Switzerland; E-mail: yuri@math.unibas.ch,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  11B75, 11B25, 11P99, 11D04;
D O I
暂无
中图分类号
学科分类号
摘要
of integers is sum-free if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Cameron conjectured that the number of sum-free sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. As a step towards this conjecture, we prove that the number of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:449 / 459
页数:10
相关论文
共 50 条
  • [31] On the structure of large sum-free sets of integers
    Tuan Tran
    Israel Journal of Mathematics, 2018, 228 : 249 - 292
  • [32] Sets of integers with no large sum-free subset
    Eberhard, Sean
    Green, Ben
    Manners, Freddie
    ANNALS OF MATHEMATICS, 2014, 180 (02) : 621 - 652
  • [33] L-functions and sum-free sets
    T. Schoen
    I. D. Shkredov
    Acta Mathematica Hungarica, 2020, 161 : 427 - 442
  • [34] On the structure of large sum-free sets of integers
    Tuan Tran
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) : 249 - 292
  • [35] L-functions and sum-free sets
    Schoen, T.
    Shkredov, I. D.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 427 - 442
  • [36] DIFFERENCE SETS AND SUM-FREE SETS IN GROUPS OF ORDER-16
    WHITEHEAD, EG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A302 - A302
  • [37] MAXIMAL SUM-FREE SETS OF GROUP ELEMENTS
    YAP, HP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (173P): : 131 - &
  • [38] The Structure of Large SUM-Free Sets in Fpn
    Versteegen, Leo
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (03): : 1057 - 1071
  • [39] Counting sum-free sets in abelian groups
    Noga Alon
    József Balogh
    Robert Morris
    Wojciech Samotij
    Israel Journal of Mathematics, 2014, 199 : 309 - 344
  • [40] SUM-FREE SETS MODULO-N
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (10): : 964 - 965