A note on Hamiltonicity of uniform random intersection graphs

被引:0
|
作者
Mindaugas Bloznelis
Irmantas Radavičius
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
来源
关键词
random graph; random intersection graph; Hamilton cycle; clustering; 05C45; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a collection of n independent random subsets of [m] = {1, 2, . . . , m} that are uniformly distributed in the class of subsets of size d, and call any two subsets adjacent whenever they intersect. This adjacency relation defines a graph called the uniform random intersection graph and denoted by Gn,m,d. We fix d = 2, 3, . . . and study when, as n,m → ∞, the graph Gn,m,d contains a Hamilton cycle (the event denoted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {G_{n,m,d}} \in \mathcal{H} $\end{document}). We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = o(1) $\end{document} for d2nm−1− lnm − 2 ln lnm → −∞ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = 1 - o(1) $\end{document} for 2nm−1− lnm − ln lnm → +∞.
引用
收藏
页码:155 / 161
页数:6
相关论文
共 50 条
  • [41] On random intersection graphs: The subgraph problem
    Karonski, M
    Scheinerman, ER
    Singer-Cohen, KB
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2): : 131 - 159
  • [42] A Guided Tour in Random Intersection Graphs
    Spirakis, Paul G.
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2013, 7966 : 29 - 35
  • [43] The Number of Triangles in Random Intersection Graphs
    Liang Dong
    Zhishui Hu
    Communications in Mathematics and Statistics, 2023, 11 : 695 - 725
  • [44] On Connectivity and Robustness in Random Intersection Graphs
    Zhao, Jun
    Yagan, Osman
    Gligor, Virgil
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) : 2121 - 2136
  • [45] The degree distribution in random intersection graphs
    Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
    Stud. Classif., Data Anal., Knowl. Organ., (291-299):
  • [46] Perfect matchings in random intersection graphs
    Mindaugas Bloznelis
    Tomasz Łuczak
    Acta Mathematica Hungarica, 2013, 138 : 15 - 33
  • [47] The Number of Triangles in Random Intersection Graphs
    Dong, Liang
    Hu, Zhishui
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (04) : 695 - 725
  • [48] Recognizing Intersection Graphs of Linear Uniform Hypergraphs
    Michael S. Jacobson
    André E. Kézdy
    Jenő Lehel
    Graphs and Combinatorics, 1997, 13 : 359 - 367
  • [49] Recognizing intersection graphs of linear uniform hypergraphs
    Jacobson, MS
    Kezdy, AE
    Lehel, J
    GRAPHS AND COMBINATORICS, 1997, 13 (04) : 359 - 367
  • [50] A note on hamiltonicity of generalized net-free graphs of large diameter
    Brousek, J
    Faudree, RJ
    Ryjácek, Z
    DISCRETE MATHEMATICS, 2002, 251 (1-3) : 77 - 85